Skip to main content
Log in

Hypothalamic insulin expression remains unaltered after short-term fasting in female rats

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Our previous study showed that 6-h fasting increased insulin expression in the hypothalamus of male rats. We, therefore, wanted to examine if this phenomenon occurs in female rats and whether it depended on the estrus cycle phase.

Methods

Female rats in proestrus or diestrus were either exposed to 6-h fasting or had ad libitum access to food. The serum, cerebrospinal fluid, and hypothalamic insulin levels were determined using radioimmunoassay. The hypothalamic insulin mRNA expression was measured by RT-qPCR, while the hypothalamic insulin distribution was assessed immunohistochemically.

Results

Albeit the short-term fasting lowered circulating insulin, both hypothalamic insulin mRNA expression and hypothalamic insulin content remained unaltered. As for the hypothalamic insulin distribution, strong insulin immunopositivity was noted primarily in ependymal cells lining the upper part of the third ventricle and some neurons mainly located within the periventricular nucleus. The pattern of insulin distribution was similar between the controls and the females exposed to fasting regardless of the estrous cycle phase.

Conclusion

The findings of this study indicate that the control of insulin expression in the hypothalamus differs from that in the pancreatic beta cells during short-term fasting. Furthermore, they also imply that the regulation of insulin expression in the female hypothalamus is different from males but independent of the estrus cycle phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. R.U. Margolis, N. Altszuler,, Insulin in the cerebrospinal fluid. Nature 215, 1375 (1967). https://doi.org/10.1038/2151375a0

    Article  CAS  PubMed  Google Scholar 

  2. G.L. King, S.M. Johnson, Receptor-mediated transport of insulin across endothelial cells. Science (80-) 227, 1583–1586 (1985)

    Article  CAS  Google Scholar 

  3. J. Havrankova, D. Schmechelt, J. Roth, A.M. Brownsteint, Identification of insulin in rat brain. Neurobiology 75, 5737–5741 (1978). https://doi.org/10.1073/pnas.75.11.5737

    Article  CAS  Google Scholar 

  4. D.G. Baskin, S.C. Woods, D.B. West, M. van Houten, B.I. Posner, D.M. Dorsa, et al. Immunocytochemical detection of insulin in rat hypothalamus and its possible uptake from cerebrospinal fluid. Endocrinology. 1983. https://doi.org/10.1210/endo-113-5-1818

  5. A. Dorn, H.‐G.Bernstein, A. Rinne, M. Ziegler, H.-J. Hahn, S. Ansorge, Insulin‐ and glucagonlike peptides in the brain. Anat Rec. 1983;207. https://doi.org/10.1002/ar.1092070108

  6. J. Havrankova, J. Roth, M.J. Brownstein, Concentrations of insulin and of insulin receptors in the brain are independent of peripheral insulin levels. Studies of obese and streptozotocin-treated rodents. J. Clin. Invest 64, 636–642 (1979). https://doi.org/10.1172/JCI109504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. Dorn, A. Rinne, H.G. Bernstein, H.J. Hahn, M. Ziegler, Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay). J. Hirnforsch. 24, 495–499 (1983)

    CAS  PubMed  Google Scholar 

  8. L. Frölich, D. Blum-Degen, H.G. Bernstein, S. Engelsberger, J. Humrich, S. Laufer et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J. Neural Transm. 105, 423–438 (1998). https://doi.org/10.1007/s007020050068

    Article  PubMed  Google Scholar 

  9. D.W. Clarke, L. Mudd, F.T. Boyd, M. Fields, M.K. Raizada. Insulin is released from rat brain neuronal cells in culture. J Neurochem. 1986. https://doi.org/10.1111/j.1471-4159.1986.tb00686.x

  10. W.S. Young, Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 8, 93–97 (1986). https://doi.org/10.1016/0143-4179(86)90035-1

    Article  CAS  PubMed  Google Scholar 

  11. R. Schechter, D. Beju, T. Gaffney, F. Schaefer, L. Whetsell, Preproinsulin I and II mRNAs and insulin electron microscopic immunoreaction are present within the rat fetal nervous system. Brain Res. 736, 16–27 (1996). https://doi.org/10.1016/0006-8993(96)00664-6

    Article  CAS  PubMed  Google Scholar 

  12. S.U. Devaskar, B.S. Singh, L.R. Carnaghi, P.A. Rajakumar, S.J. Giddings, Insulin II gene expression in rat central nervous system. Regul. Pept. 48, 55–63 (1993). https://doi.org/10.1016/0167-0115(93)90335-6

    Article  CAS  PubMed  Google Scholar 

  13. A.E. Mehran, N.M. Templeman, G.S. Brigidi, G.E. Lim, K.Y. Chu, X. Hu et al. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab. 16, 723–737 (2012). https://doi.org/10.1016/j.cmet.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  14. T.B. Dakic, T.V. Jevdjovic, M.I. Peric, I.M. Bjelobaba, M.B. Markelic, B.S. Milutinovic et al. Short-term fasting promotes insulin expression in rat hypothalamus. Eur. J. Neurosci. 46, 1730–1737 (2017). https://doi.org/10.1111/ejn.13607

    Article  PubMed  Google Scholar 

  15. J. Lee, K. Kyungchan, C.J. Hyun, B.J. Young, T. O’Leary, J. Johnson et al. Insulin synthesized in the paraventricular nucleus of the hypothalamus regulates body length by modulating pituitary growth hormone production. JCI Insight 6, e135412 (2020). https://doi.org/10.1016/j.ibror.2019.07.1239

    Article  Google Scholar 

  16. T. Kuwabara, M.N. Kagalwala, Y. Onuma, Y. Ito, M. Warashina, K. Terashima et al. Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb. EMBO Mol. Med 3, 742–754 (2011). https://doi.org/10.1002/emmm.201100177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. B. Pansky, J.S. Hatfield, Cerebral localization of insulin by immunofluorescence. Am. J. Anat. 1978. https://doi.org/10.1002/aja.1001530309

  18. C.H. Mazucanti, Q.R. Liu, D. Lang, N. Huang, J.F. O’Connell, S. Camandola et al. Release of insulin produced by the choroids plexis is regulated by serotonergic signaling. JCI Insight 4, e131682 (2019). https://doi.org/10.1172/jci.insight.131682

    Article  PubMed Central  Google Scholar 

  19. R. Schechter, L. Holtzclaw, F. Sadiq, A. Kahn, S. Devaskar, Insulin synthesis by isolated rabbit neurons. Endocrinology. 1988. https://doi.org/10.1210/endo-123-1-505

  20. D.J. Brief, J.D. Davis, Reduction of food intake and body weight by chronic intraventricular insulin infusion. Brain Res. Bull. 1984;12. https://doi.org/10.1016/0361-9230(84)90174-6

  21. M. Chavez, C.A. Riedy, G. Van Dijk, S.C. Woods, Central insulin and macronutrient intake in the rat. Am. J. Physiol. - Regul Integr Comp Physiol. 271, (1996). https://doi.org/10.1152/ajpregu.1996.271.3.r727

  22. T. Scherer, J. OHare, K. Diggs-Andrews, M. Schweiger, B. Cheng, C. Lindtner et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 13, 183–194 (2011). https://doi.org/10.1016/j.cmet.2011.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M.C. Vogt, J.C. Brüning, CNS insulin signaling in the control of energy homeostasis and glucose metabolism - from embryo to old age. Trends Endocrinol. Metabolism pp. 76–84, (2013). https://doi.org/10.1016/j.tem.2012.11.004

  24. R. Ghasemi, A. Haeri, L. Dargahi, Z. Mohamed, A. Ahmadiani, Insulin in the brain: Sources, localization and functions. Mol. Neurobiol. pp. 145–171, (2013). https://doi.org/10.1007/s12035-012-8339-9

  25. A. Kleinridders, H.A. Ferris, W. Cai, C.R. Kahn, Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63, 2232–2243 (2014). https://doi.org/10.2337/db14-0568

    Article  PubMed  PubMed Central  Google Scholar 

  26. A.E. Bunner, P.C. Chandrasekera, N.D. Barnard, Knockout mouse models of insulin signaling: Relevance past and future. World J. Diabetes (2014). https://doi.org/10.4239/wjd.v5.i2.146

  27. L. Plum, M. Schubert, J.C. Brüning, The role of insulin receptor signaling in the brain. Trends Endocrinol. Metab. 16, 59–65 (2005). https://doi.org/10.1016/j.tem.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  28. E.C. Davis, J.E. Shryne, R.A. Gorski, Structural sexual dimorphisms in the anteroventral periventricular nucleus of the rat hypothalamus are sensitive to gonadal steroids perinatally, but develop peripubertally. Neuroendocrinology 63, 142–148 (1996). https://doi.org/10.1159/000126950

    Article  CAS  PubMed  Google Scholar 

  29. S.J. Semaan, A.S. Kauffman, Sexual differentiation and development of forebrain reproductive circuits. Curr. Opin. Neurobiol. 20, 424–431 (2010). https://doi.org/10.1016/j.conb.2010.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Della Torre, N. Mitro, C. Meda, F. Lolli, S. Pedretti, M. Barcella et al. Short-term fasting reveals amino acid metabolism as a major sex-discriminating factor in the liver. Cell Metab. 28, 256–267 (2018). https://doi.org/10.1016/j.cmet.2018.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. T. Freire, A.M. Senior, R. Perks, T. Pulpitel, X. Clark, A.E. Brandon et al. Sex-specific metabolic responses to 6 h fasting during the active phase in young mice. J. Physiol. 0, 1–12 (2020). https://doi.org/10.1113/jp278806

    Article  CAS  Google Scholar 

  32. B. Martin, M. Pearson, L. Kebejian, E. Golden, A. Keselman, M. Bender et al. Sex-dependent metabolic, neuroendocrine, and cognitive responses to dietary energy restriction and excess. Endocrinology 148, 4318–4333 (2007). https://doi.org/10.1210/en.2007-0161

    Article  CAS  PubMed  Google Scholar 

  33. M.S. Hedrington, S.N. Davis, Sexual dimorphism in glucose and lipid metabolism during fasting, hypoglycemia, and exercise. Front Endocrinol. (Lausanne) 6, 1–6 (2015). https://doi.org/10.3389/fendo.2015.00061

    Article  Google Scholar 

  34. A.C. McLean, N. Valenzuela, S. Fai, S.A.L. Bennett, Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J. Vis. Exp. 67, e4389 (2012). https://doi.org/10.3791/4389

    Article  CAS  Google Scholar 

  35. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods (2001). https://doi.org/10.1006/meth.2001.1262

  36. J.M. Goldman, A.S. Murr, R.L. Cooper, The rodent estrous cycle: Characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res Part B - Dev. Reprod. Toxicol. 80, 84–97 (2007). https://doi.org/10.1002/bdrb.20106

    Article  CAS  Google Scholar 

  37. E.D. Brăslaşu, C. Brădăłan, M. Cornilă, Normal blood glucose in white wistar rat and its changes following anesthesia. Lucr Ştiinłifice Med Vet. XL, 120–123 (2007)

    Google Scholar 

  38. P. Vujovic, I. Lakic, D. Laketa, N. Jasnic, S.F. Djurasevic, G. Cvijic et al. Time-dependent effects of starvation on serum, pituitary and hypothalamic leptin levels in rats. Physiol. Res. 60, S165–S170 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. M.D. McCue, Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp. Biochem Physiol. - A Mol. Integr. Physiol. 156, 1–18 (2010). https://doi.org/10.1016/j.cbpa.2010.01.002

    Article  CAS  PubMed  Google Scholar 

  40. C.E. Geisler, C. Hepler, M.R. Higgins, B.J. Renquist, Hepatic adaptations to maintain metabolic homeostasis in response to fasting and refeeding in mice. Nutr. Metab. 13, 62 (2016). https://doi.org/10.1186/s12986-016-0122-x

    Article  CAS  Google Scholar 

  41. J.M. Berg, J.L. Tymoczko, L. Stryer, Food Intake and Starvation Induce Metabolic Changes. Biochemistry. W H Freeman (2002)

  42. A. Svenningsen, V. Bonnevie-Nielsen, Effects of fasting on beta-cell function, body fat, islet volume, and total pancreatic insulin content. Metabolism 33, 612–616 (1984). https://doi.org/10.1016/0026-0495(84)90058-1

    Article  CAS  PubMed  Google Scholar 

  43. J.H. Strubbe, D. Porte, S.C. Woods, Insulin responses and glucose levels in plasma and cerebrospinal fluid during fasting and refeeding in the rat. Physiol. Behav. 44, 205–208 (1988). https://doi.org/10.1016/0031-9384(88)90139-4

    Article  CAS  PubMed  Google Scholar 

  44. L. Wagner, R. Veit, L. Fritsche, H.-U. Häring, A. Fritsche, A.L. Birkenfeld et al. Sex differences in central insulin action: Effect of intranasal insulin on neural food cue reactivity in adults with normal weight and overweight. Int J. Obes. 46, 1662–1670 (2022). https://doi.org/10.1038/s41366-022-01167-3

    Article  CAS  Google Scholar 

  45. A. Kleinridders, E.N. Pothos, Impact of brain insulin signaling on dopamine function, food intake, reward, and emotional behavior. Curr. Nutr. Rep. (2019). https://doi.org/10.1007/s13668-019-0276-z

  46. A.I. Duarte, M.S. Santos, C.R. Oliveira, P.I. Moreira, Brain insulin signalling, glucose metabolism and females’ reproductive aging: A dangerous triad in Alzheimer’s disease. Neuropharmacology (2018). https://doi.org/10.1016/j.neuropharm.2018.01.044

Download references

Acknowledgements

The authors wish to thank Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia, for the access to their microtome facility where coronal sections of the brain were made.

Funding

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, under the contract number 451-03-68/2022-14/ 200178.

Author information

Authors and Affiliations

Authors

Contributions

P.V. made the study conception and design. Material preparation, animal handling, data collection and analysis were performed by T.D. M.M. performed immunohistochemistry and interpreted the data. A.R. performed qPCR analysis. I.L. performed animal handling, collected CSF and interpreted the data. T.J. contributed to the interpretation of the results. The first draft of the manuscript was written by T.D. P.V. and M.M. performed review and editing. All authors provided critical feedback and helped shape the manuscript. J.Dj. reviewed the manuscript and obtained financial support. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tamara B. Dakic.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All procedures were performed according to the Serbian Animals Welfare Law (No. 41/2009) which is in accordance with rules proposed by the Federation of European Laboratory Animal Science and Directive 2010/63/EU. The project was approved by the Ethics Committee of the Faculty of Biology, University of Belgrade (Permit No. EK-BF-2020/10) and Serbian Ministry of Agriculture, Forestry and Water Management, Veterinary Directorate (Permit No. 323-07-01936/2021-05).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakic, T.B., Markelic, M.B., Ruzicic, A.A. et al. Hypothalamic insulin expression remains unaltered after short-term fasting in female rats. Endocrine 78, 476–483 (2022). https://doi.org/10.1007/s12020-022-03235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03235-0

Keywords

Navigation