Abstract
Purpose
Exposure to pesticides has been associated with obesity and diabetes in humans and experimental models mainly due to endocrine disruptor effects. First contact with environmental pesticides occurs during critical phases of life, such as gestation and lactation, which can lead to damage in central and peripheral tissues and subsequently programming disorders early and later in life.
Methods
We reviewed epidemiological and experimental studies that associated pesticide exposure during gestation and lactation with programming obesity and diabetes in progeny.
Results
Maternal exposure to organochlorine, organophosphate and neonicotinoids, which represent important pesticide groups, is related to reproductive and behavioral dysfunctions in offspring; however, few studies have focused on glucose metabolism and obesity as outcomes.
Conclusion
We provide an update regarding the use and metabolic impact of early pesticide exposure. Considering their bioaccumulation in soil, water, and food and through the food chain, pesticides should be considered a great risk factor for several diseases. Thus, it is urgent to reformulate regulatory actions to reduce the impact of pesticides on the health of future generations.
Similar content being viewed by others
References
P.D. Gluckman, M.A. Hanson, Developmental plasticity and human disease: research directions. J Intern Med 261(5), 461–471 (2007). https://doi.org/10.1111/j.1365-2796.2007.01802.x
T. Bianco-Miotto, J.M. Craig, Y.P. Gasser, S.J. van Dijk, S.E. Ozanne, Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis 8(5), 513–519 (2017). https://doi.org/10.1017/S2040174417000733
D.J. Barker, J.G. Eriksson, T. Forsen, C. Osmond, Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 31(6), 1235–1239 (2002). https://doi.org/10.1093/ije/31.6.1235
J.J. Heindel, The developmental basis of disease: Update on environmental exposures and animal models. Basic Clin Pharm Toxicol 125(Suppl 3), 5–13 (2019). https://doi.org/10.1111/bcpt.13118
J.J. Heindel, J. Balbus, L. Birnbaum, M.N. Brune-Drisse, P. Grandjean, K. Gray, P.J. Landrigan, P.D. Sly, W. Suk, D. Cory Slechta, C. Thompson, M. Hanson, Developmental origins of health and disease: integrating environmental influences. Endocrinology 156(10), 3416–3421 (2015). https://doi.org/10.1210/EN.2015-1394
P.F. Baillie-Hamilton, Chemical toxins: a hypothesis to explain the global obesity epidemic. J Alter Complement Med 8(2), 185–192 (2002). https://doi.org/10.1089/107555302317371479
J.J. Heindel, B. Blumberg, M. Cave, R. Machtinger, A. Mantovani, M.A. Mendez, A. Nadal, P. Palanza, G. Panzica, R. Sargis, L.N. Vandenberg, F. Vom Saal, Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 68, 3–33 (2017). https://doi.org/10.1016/j.reprotox.2016.10.001
B.S. Silva, I.M. Bertasso, C.B. Pietrobon, B.P. Lopes, T.R. Santos, N. Peixoto-Silva, J.C. Carvalho, S. Claudio-Neto, A.C. Manhaes, S.S. Cabral, G.E.G. Kluck, G.C. Atella, E. Oliveira, E.G. Moura, P.C. Lisboa, Effects of maternal bisphenol A on behavior, sex steroid and thyroid hormones levels in the adult rat offspring. Life Sci 218, 253–264 (2019). https://doi.org/10.1016/j.lfs.2018.12.039
J.F.P. de Araujo, P.L. Podratz, G.C. Sena, E. Merlo, L.C. Freitas-Lima, J.G.M. Ayub, A.F.Z. Pereira, A.P. Santos-Silva, L. Miranda-Alves, I.V. Silva, J.B. Graceli, The obesogen tributyltin induces abnormal ovarian adipogenesis in adult female rats. Toxicol Lett 295, 99–114 (2018). https://doi.org/10.1016/j.toxlet.2018.06.1068
S. Ghosh, L. Murinova, T. Trnovec, C.A. Loffredo, K. Washington, P.S. Mitra, S.K. Dutta, Biomarkers linking PCB exposure and obesity. Curr Pharm Biotechnol 15(11), 1058–1068 (2014). https://doi.org/10.2174/1389201015666141122203509
M. Czajka, M. Matysiak-Kucharek, B. Jodlowska-Jedrych, K. Sawicki, B. Fal, B. Drop, M. Kruszewski, L. Kapka-Skrzypczak, Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. Environ Res 178, 108685 (2019). https://doi.org/10.1016/j.envres.2019.108685
B. Weiss, S. Amler, R.W. Amler, Pesticides. Pediatrics 113(4 Suppl), 1030–1036 (2004)
K.P. Dubois, Insecticides, rodenticides, herbicides; household hazards. Postgrad Med 24(3), 278–288 (1958). https://doi.org/10.1080/00325481.1958.11692212
W. Mnif, A.I. Hassine, A. Bouaziz, A. Bartegi, O. Thomas, B. Roig, Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health 8(6), 2265–2303 (2011). https://doi.org/10.3390/ijerph8062265
International Agency for Research on Cancer (IARC), World Health Organization (WHO). IARCMonographs evaluate DDT, lindane, and 2,4-D. Press release 236. 2015. https://monographs.iarc.who.int/wpcontent/uploads/2018/07/QA_ENG.pdf
D.A. John, G.R. Babu, Lessons from the aftermaths of green revolution on food system and health. Front Sustain Food Syst 5, 644559 (2021). https://doi.org/10.3389/fsufs.2021.644559
Carson, R.: Silent spring. Pub. Houghton Mifflin, USA (1962).
A.F. Hernandez, T. Parron, R. Alarcon, Pesticides and asthma. Curr Opin Allergy Clin Immunol 11(2), 90–96 (2011). https://doi.org/10.1097/ACI.0b013e3283445939
A. Ascherio, M.A. Schwarzschild, The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15(12), 1257–1272 (2016). https://doi.org/10.1016/S1474-4422(16)30230-7
Miani, A., Imbriani, G., De Filippis, G., De Giorgi, D., Peccarisi, L., Colangelo, M., Pulimeno, M., Castellone, M.D., Nicolardi, G., Logroscino, G., Piscitelli, P.: Autism spectrum disorder and prenatal or early life exposure to pesticides: a short review. Int J Environ Res Public Health 18(20) (2021). https://doi.org/10.3390/ijerph182010991
D. Montes-Grajales, J. Olivero-Verbel, Structure-based identification of endocrine disrupting pesticides targeting breast cancer proteins. Toxicology 439, 152459 (2020). https://doi.org/10.1016/j.tox.2020.152459
C. Yang, A.P.S. Kong, Z. Cai, A.C.K. Chung, Persistent organic pollutants as risk factors for obesity and diabetes. Curr DiabRep 17(12), 132 (2017). https://doi.org/10.1007/s11892-017-0966-0
M.E. Miller, M. Hamann, F.J. Kroon, Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data. PLoS One 15(10), e0240792 (2020). https://doi.org/10.1371/journal.pone.0240792
M. Collotta, P.A. Bertazzi, V. Bollati, Epigenetics and pesticides. Toxicology 307, 35–41 (2013). https://doi.org/10.1016/j.tox.2013.01.017
S. Mostafalou, M. Abdollahi, Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharm 268(2), 157–177 (2013). https://doi.org/10.1016/j.taap.2013.01.025
E. Evangelou, G. Ntritsos, M. Chondrogiorgi, F.K. Kavvoura, A.F. Hernandez, E.E. Ntzani, I. Tzoulaki, Exposure to pesticides and diabetes: A systematic review and meta-analysis. Environ Int 91, 60–68 (2016). https://doi.org/10.1016/j.envint.2016.02.013
L.E. Gray Jr., J. Ostby, Effects of pesticides and toxic substances on behavioral and morphological reproductive development: endocrine versus nonendocrine mechanisms. Toxicol Ind Health 14(1-2), 159–184 (1998). https://doi.org/10.1177/074823379801400111
L.G. Rosas, B. Eskenazi, Pesticides and child neurodevelopment. Curr Opin Pediatr 20(2), 191–197 (2008). https://doi.org/10.1097/MOP.0b013e3282f60a7d
J.J. Heindel, History of the obesogen field: looking back to look forward. Front Endocrinol 10, 14 (2019). https://doi.org/10.3389/fendo.2019.00014
P.D. Darbre, Endocrine disruptors and obesity. Curr Obes Rep 6(1), 18–27 (2017). https://doi.org/10.1007/s13679-017-0240-4
M. Anand, A. Taneja, Organochlorine pesticides residue in placenta and their influence on anthropometric measures of infants. Environ Res 182, 109106 (2020). https://doi.org/10.1016/j.envres.2019.109106
Y. Jeong, S. Lee, S. Kim, J. Park, H.J. Kim, G. Choi, S. Choi, S. Kim, S.Y. Kim, S. Kim, K. Choi, H.B. Moon, Placental transfer of persistent organic pollutants and feasibility using the placenta as a non-invasive biomonitoring matrix. Sci Total Environ 612, 1498–1505 (2018). https://doi.org/10.1016/j.scitotenv.2017.07.054
Witczak, A., Pohorylo, A., Abdel-Gawad, H.: Endocrine-disrupting organochlorine pesticides in human breast milk: changes during lactation. Nutrients 13 (1) (2021). https://doi.org/10.3390/nu13010229
C.L.F. Fernandes, L.M. Volcao, P.F. Ramires, R.R. Moura, F.M.R. Da Silva Junior, Distribution of pesticides in agricultural and urban soils of Brazil: a critical review. Environ Sci Process Impacts 22(2), 256–270 (2020). https://doi.org/10.1039/c9em00433e
C. Pelletier, P. Imbeault, A. Tremblay, Energy balance and pollution by organochlorines and polychlorinated biphenyls. Obes Rev 4(1), 17–24 (2003). https://doi.org/10.1046/j.1467-789x.2003.00085.x
S. Karami-Mohajeri, M. Abdollahi, Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol 30(9), 1119–1140 (2011). https://doi.org/10.1177/0960327110388959
E. Vizcaino, J.O. Grimalt, A. Fernandez-Somoano, A. Tardon, Transport of persistent organic pollutants across the human placenta. Environ. Int 65, 107–115 (2014). https://doi.org/10.1016/j.envint.2014.01.004
D.J. Wilson, D.J. Locker, C.A. Ritzen, J.T. Watson, W. Schaffner, DDT concentrations in human milk. Am J Dis Child 125(6), 814–817 (1973). https://doi.org/10.1001/archpedi.1973.04160060026005
E. Junque, S. Garcia, M.A. Martinez, J. Rovira, M. Schuhmacher, J.O. Grimalt, Changes of organochlorine compound concentrations in maternal serum during pregnancy and comparison to serum cord blood composition. Environ Res 182, 108994 (2020). https://doi.org/10.1016/j.envres.2019.108994
F. Konradsen, W. van der Hoek, F.P. Amerasinghe, C. Mutero, E. Boelee, Engineering and malaria control: learning from the past 100 years. Acta Trop 89(2), 99–108 (2004). https://doi.org/10.1016/j.actatropica.2003.09.013
S. Sudharshan, R. Naidu, M. Mallavarapu, N. Bolan, DDT remediation in contaminated soils: a review of recent studies. Biodegradation 23(6), 851–863 (2012). https://doi.org/10.1007/s10532-012-9575-4
F.D. Martinez, A. Trejo-Acevedo, A.F. Betanzos, G. Espinosa-Reyes, J.A. Alegria-Torres, I.N. Maldonado, Assessment of DDT and DDE levels in soil, dust, and blood samples from Chihuahua, Mexico. Arch Environ Contam Toxicol 62(2), 351–358 (2012). https://doi.org/10.1007/s00244-011-9700-0
J.R. Harley, V.A. Gill, S. Lee, K. Kannan, V. Santana, K. Burek-Huntington, T.M. O’Hara, Concentrations of organohalogens (PCBs, DDTs, PBDEs) in hunted and stranded Northern sea otters (Enhydra lutris Kenyon) in Alaska from 1992 to 2010: Links to pathology and feeding ecology. Sci Total Environ 691, 789–798 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.040
I. Al-Saleh, I. Al-Doush, A. Alsabbaheen, D. Mohamed Gel, A. Rabbah, Levels of DDT and its metabolites in placenta, maternal and cord blood and their potential influence on neonatal anthropometric measures. Sci Total Environ 416, 62–74 (2012). https://doi.org/10.1016/j.scitotenv.2011.11.020
Fruge, A.D., Cases, M.G., Schildkraut, J.M., Demark-Wahnefried, W.: Associations between obesity, body fat distribution, weight loss and weight cycling on serum pesticide concentrations. J Food Nutr Disord 5(3) (2016). https://doi.org/10.4172/2324-9323.1000198
G. Cano-Sancho, A.G. Salmon, M.A. La Merrill, Association between exposure to p,p’-DDT and Its Metabolite p,p’-DDE with obesity: Integrated systematic review and meta-analysis. Environ Health Perspect. 125(9), 096002 (2017). https://doi.org/10.1289/EHP527
N. Tawar, B.D. Banerjee, B.K. Mishra, T. Sharma, S. Tyagi, S.V. Madhu, V. Agarwal, S. Gupta, Adipose tissue levels of DDT as risk factor for obesity and Type 2 Diabetes Mellitus. Indian J Endocrinol Metab 25(2), 160–165 (2021). https://doi.org/10.4103/ijem.ijem_198_21
N. Stratakis, S. Rock, M.A. La Merrill, M. Saez, O. Robinson, D. Fecht, M. Vrijheid, D. Valvi, D.V. Conti, R. McConnell, V.L. Chatzi, Prenatal exposure to persistent organic pollutants and childhood obesity: A systematic review and meta-analysis of human studies. Obes Rev 23(Suppl 1), e13383 (2022). https://doi.org/10.1111/obr.13383
S.L. Verhulst, V. Nelen, E.D. Hond, G. Koppen, C. Beunckens, C. Vael, G. Schoeters, K. Desager, Intrauterine exposure to environmental pollutants and body mass index during the first 3 years of life. Environ Health Perspect 117(1), 122–126 (2009). https://doi.org/10.1289/ehp.0800003
D. Valvi, M.A. Mendez, D. Martinez, J.O. Grimalt, M. Torrent, J. Sunyer, M. Vrijheid, Prenatal concentrations of polychlorinated biphenyls, DDE, and DDT and overweight in children: a prospective birth cohort study. Environ Health Perspect 120(3), 451–457 (2012). https://doi.org/10.1289/ehp.1103862
M. Warner, M. Ye, K. Harley, K. Kogut, A. Bradman, B. Eskenazi, Prenatal DDT exposure and child adiposity at age 12: The CHAMACOS study. Environ Res 159, 606–612 (2017). https://doi.org/10.1016/j.envres.2017.08.050
M.A. La Merrill, N.Y. Krigbaum, P.M. Cirillo, B.A. Cohn, Association between maternal exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) and risk of obesity in middle age. Int J Obes 44(8), 1723–1732 (2020). https://doi.org/10.1038/s41366-020-0586-7
P.M. Cirillo, M.A. La Merrill, N.Y. Krigbaum, B.A. Cohn, Grandmaternal perinatal serum DDT in Relation to granddaughter early menarche and adult obesity: three generations in the child health and development studies cohort. Cancer Epidemiol Biomark Prev 30(8), 1480–1488 (2021). https://doi.org/10.1158/1055-9965.EPI-20-1456
M.K. Skinner, M. Manikkam, R. Tracey, C. Guerrero-Bosagna, M. Haque, E.E. Nilsson, Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med 11, 228 (2013). https://doi.org/10.1186/1741-7015-11-228
S. Cox, A.S. Niskar, K.M. Narayan, M. Marcus, Prevalence of self-reported diabetes and exposure to organochlorine pesticides among Mexican Americans: Hispanic health and nutrition examination survey, 1982-1984. Environ Health Perspect 115(12), 1747–1752 (2007). https://doi.org/10.1289/ehp.10258
A.A. Al-Othman, S.H. Abd-Alrahman, N.M. Al-Daghri, DDT and its metabolites are linked to increased risk of type 2 diabetes among Saudi adults: a cross-sectional study. Environ Sci Pollut Res Int 22(1), 379–386 (2015). https://doi.org/10.1007/s11356-014-3371-0
M. La Merrill, E. Karey, E. Moshier, C. Lindtner, M.R. La Frano, J.W. Newman, C. Buettner, Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PLoS One 9(7), e103337 (2014). https://doi.org/10.1371/journal.pone.0103337
J.R. Lakowicz, D. Hogen, G. Omann, Diffusion and partitioning of a pesticide, lindane, into phosphatidylcholine bilayers. A new fluorescence quenching method to study chlorinated hydrocarbon-membrane interactions. Biochim Biophys Acta 471(3), 401–411 (1977). https://doi.org/10.1016/0005-2736(77)90045-1
A. Ferro, D. Teixeira, D. Pestana, R. Monteiro, C.C. Santos, V.F. Domingues, J. Polonia, C. Calhau, POPs’ effect on cardiometabolic and inflammatory profile in a sample of women with obesity and hypertension. Arch Environ Occup Health 74(6), 310–321 (2019). https://doi.org/10.1080/19338244.2018.1535480
S. Li, X. Wang, L. Yang, S. Yao, R. Zhang, X. Xiao, Z. Zhang, L. Wang, Q. Xu, S.L. Wang, Interaction between beta-hexachlorocyclohexane and ADIPOQ genotypes contributes to the risk of type 2 diabetes mellitus in East Chinese adults. Sci Rep 6, 37769 (2016). https://doi.org/10.1038/srep37769
A. Al-Othman, S. Yakout, S.H. Abd-Alrahman, N.M. Al-Daghri, Strong associations between the pesticide hexachlorocyclohexane and type 2 diabetes in Saudi adults. Int J Environ Res Public Health 11(9), 8984–8995 (2014). https://doi.org/10.3390/ijerph110908984
R. Criswell, V. Lenters, S. Mandal, H. Stigum, N. Iszatt, M. Eggesbo, Persistent environmental toxicants in breast milk and rapid infant growth. Ann Nutr Metab 70(3), 210–216 (2017). https://doi.org/10.1159/000463394
C. Calciu, S. Kubow, H.M. Chan, Interactive dysmorphogenic effects of toxaphene or toxaphene congeners and hyperglycemia on cultured whole rat embryos during organogenesis. Toxicology 175(1-3), 153–165 (2002). https://doi.org/10.1016/s0300-483x(02)00075-6
R.J. Kavlock, N. Chernoff, E. Rogers, D. Whitehouse, B. Carver, J. Gray, K. Robinson, An analysis of fetotoxicity using biochemical endpoints of organ differentiation. Teratology 26(2), 183–194 (1982). https://doi.org/10.1002/tera.1420260211
I.S. Che Sulaiman, B.W. Chieng, M.J. Osman, K.K. Ong, J.I.A. Rashid, W.M.Z. Wan Yunus, S.A.M. Noor, N.A.M. Kasim, N.A. Halim, A. Mohamad, A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Mikrochim Acta 187(2), 131 (2020). https://doi.org/10.1007/s00604-019-3893-8
S. Suratman, J.W. Edwards, K. Babina, Organophosphate pesticides exposure among farmworkers: pathways and risk of adverse health effects. Rev Environ Health 30(1), 65–79 (2015). https://doi.org/10.1515/reveh-2014-0072
J.E. Casida, Organophosphorus xenobiotic toxicology. Annu Rev Pharm Toxicol 57, 309–327 (2017). https://doi.org/10.1146/annurev-pharmtox-010716-104926
S. Thapa, M. Lv, H. Xu, Acetylcholinesterase: A primary target for drugs and insecticides. Mini Rev Med Chem 17(17), 1665–1676 (2017). https://doi.org/10.2174/1389557517666170120153930
Singh, S., Kumar, V., Gill, J.P.K., Datta, S., Singh, S., Dhaka, V., Kapoor, D., Wani, A.B., Dhanjal, D.S., Kumar, M., Harikumar, S.L., Singh, J.: Herbicide Glyphosate: Toxicity and Microbial Degradation. Int J Environ Res Public Health 17(20) (2020). https://doi.org/10.3390/ijerph17207519
M.M. Milesi, V. Lorenz, M. Durando, M.F. Rossetti, J. Varayoud, Glyphosate herbicide: reproductive outcomes and multigenerational effects. Front Endocrinol 12, 672532 (2021). https://doi.org/10.3389/fendo.2021.672532
V. Lorenz, G. Pacini, E.H. Luque, J. Varayoud, M.M. Milesi, Perinatal exposure to glyphosate or a glyphosate-based formulation disrupts hormonal and uterine milieu during the receptive state in rats. Food Chem Toxicol 143, 111560 (2020). https://doi.org/10.1016/j.fct.2020.111560
M.M. Milesi, V. Lorenz, G. Pacini, M.R. Repetti, L.D. Demonte, J. Varayoud, E.H. Luque, Perinatal exposure to a glyphosate-based herbicide impairs female reproductive outcomes and induces second-generation adverse effects in Wistar rats. Arch Toxicol 92(8), 2629–2643 (2018). https://doi.org/10.1007/s00204-018-2236-6
J.L. Teleken, E.C.Z. Gomes, C. Marmentini, M.B. Moi, R.A. Ribeiro, S.L. Balbo, E.M.P. Amorim, M.L. Bonfleur, Glyphosate-based herbicide exposure during pregnancy and lactation malprograms the male reproductive morphofunction in F1 offspring. J Dev Orig Health Dis 11(2), 146–153 (2020). https://doi.org/10.1017/S2040174419000382
M.A. Romano, R.M. Romano, L.D. Santos, P. Wisniewski, D.A. Campos, P.B. de Souza, P. Viau, M.M. Bernardi, M.T. Nunes, C.A. de Oliveira, Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch Toxicol 86(4), 663–673 (2012). https://doi.org/10.1007/s00204-011-0788-9
Y. Ait-Bali, S. Ba-M’hamed, G. Gambarotta, M. Sassoe-Pognetto, M. Giustetto, M. Bennis, Pre- and postnatal exposure to glyphosate-based herbicide causes behavioral and cognitive impairments in adult mice: evidence of cortical ad hippocampal dysfunction. Arch Toxicol 94(5), 1703–1723 (2020). https://doi.org/10.1007/s00204-020-02677-7
Y. Pu, L. Ma, J. Shan, X. Wan, B.D. Hammock, K. Hashimoto, Autism-like behaviors in male juvenile offspring after maternal glyphosate exposure. Clin Psychopharmacol Neurosci 19(3), 554–558 (2021). https://doi.org/10.9758/cpn.2021.19.3.554
D. Kubsad, E.E. Nilsson, S.E. King, I. Sadler-Riggleman, D. Beck, M.K. Skinner, Assessment of glyphosate induced epigenetic transgenerational inheritance of pathologies and sperm epimutations: generational toxicology. Sci Rep 9(1), 6372 (2019). https://doi.org/10.1038/s41598-019-42860-0
S.B. Panza, R. Vargas, S.L. Balbo, M.L. Bonfleur, D.C.T. Granzotto, D.M.G. Sant’Ana, G.A. Nogueira-Melo, Perinatal exposure to low doses of glyphosate-based herbicide combined with a high-fat diet in adulthood causes changes in the jejunums of mice. Life Sci 275, 119350 (2021). https://doi.org/10.1016/j.lfs.2021.119350
O.E. Kale, M. Vongdip, T.F. Ogundare, O. Osilesi, The use of combined high-fructose diet and glyphosate to model rats type 2 diabetes symptomatology. Toxicol Mech Methods 31(2), 126–137 (2021). https://doi.org/10.1080/15376516.2020.1845889
R. Mesnage, M.N. Antoniou, Facts and fallacies in the debate on glyphosate toxicity. Front Public Health 5, 316 (2017). https://doi.org/10.3389/fpubh.2017.00316
Z. Lin, S. Pang, W. Zhang, S. Mishra, P. Bhatt, S. Chen, Degradation of acephate and its intermediate methamidophos: mechanisms and biochemical pathways. Front Microbiol 11, 2045 (2020). https://doi.org/10.3389/fmicb.2020.02045
C.P. do Nascimento, G.X. Maretto, G.L.M. Marques, L.M. Passamani, A.P. Abdala, L.C. Schenberg, V. Beijamini, K.N. Sampaio, Methamidophos, an organophosphorus insecticide, induces pro-aggressive behaviour in mice. Neurotox Res 32(3), 398–408 (2017). https://doi.org/10.1007/s12640-017-9750-9
M. Uriostegui-Acosta, I. Hernandez-Ochoa, M. Sanchez-Gutierrez, B. Pina-Guzman, L. Rafael-Vazquez, M.J. Solis-Heredia, G. Martinez-Aguilar, B. Quintanilla-Vega, Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice. Toxicol Appl Pharm 279(3), 391–400 (2014). https://doi.org/10.1016/j.taap.2014.06.017
V. Lucia Scherholz de Castro, S. Heloisa Chiorato, Effects of separate and combined exposure to the pesticides methamidophos and chlorothalonil on the development of suckling rats. Int J Hyg Environ Health 210(2), 169–176 (2007). https://doi.org/10.1016/j.ijheh.2006.09.003
T.A. Ribeiro, K.V. Prates, A. Pavanello, A. Malta, L.P. Tofolo, I.P. Martins, J.C. Oliveira, R.A. Miranda, R.M. Gomes, E. Vieira, C.C. Franco, L.F. Barella, F.A. Francisco, V.S. Alves, S.D. Silveira, V.M. Moreira, G.S. Fabricio, K. Palma-Rigo, D.M. Sloboda, P.C. Mathias, Acephate exposure during a perinatal life program to type 2 diabetes. Toxicology 372, 12–21 (2016). https://doi.org/10.1016/j.tox.2016.10.010
A.R. Nandhini, M. Harshiny, S.N. Gummadi, Chlorpyrifos in environment and food: a critical review of detection methods and degradation pathways. Environ Sci Process Impacts 23(9), 1255–1277 (2021). https://doi.org/10.1039/d1em00178g
T. Farkhondeh, A. Amirabadizadeh, S. Samarghandian, O. Mehrpour, Impact of chlorpyrifos on blood glucose concentration in an animal model: a systematic review and meta-analysis. Environ Sci Pollut Res Int 27(3), 2474–2481 (2020). https://doi.org/10.1007/s11356-019-07229-w
E.N. Ndonwi, B. Atogho-Tiedeu, E. Lontchi-Yimagou, T.S. Shinkafi, D. Nanfa, E.V. Balti, J.C. Katte, A. Mbanya, T. Matsha, J.C. Mbanya, A. Shakir, E. Sobngwi, Metabolic effects of exposure to pesticides during gestation in female Wistar rats and their offspring: a risk factor for diabetes. Toxicol Res 36(3), 249–256 (2020). https://doi.org/10.1007/s43188-019-00028-y
M.M. Lasram, K. Bouzid, I.B. Douib, A. Annabi, N. El Elj, S. El Fazaa, J. Abdelmoula, N. Gharbi, Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat. Drug Chem Toxicol 38(2), 227–234 (2015). https://doi.org/10.3109/01480545.2014.933348
W. Han, Y. Tian, X. Shen, Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere 192, 59–65 (2018). https://doi.org/10.1016/j.chemosphere.2017.10.149
C.S. Anjos, R.N. Lima, A.L.M. Porto, An overview of neonicotinoids: biotransformation and biodegradation by microbiological processes. Environ Sci Pollut Res Int 28(28), 37082–37109 (2021). https://doi.org/10.1007/s11356-021-13531-3
Y. Park, Y. Kim, J. Kim, K.S. Yoon, J. Clark, J. Lee, Y. Park, Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. J Agric Food Chem 61(1), 255–259 (2013). https://doi.org/10.1021/jf3039814
Q. Sun, W. Qi, X. Xiao, S.H. Yang, D. Kim, K.S. Yoon, J.M. Clark, Y. Park, Imidacloprid promotes high fat diet-induced adiposity in female C57BL/6J mice and enhances Adipogenesis in 3T3-L1 Adipocytes via the AMPKalpha-mediated pathway. J Agric Food Chem 65(31), 6572–6581 (2017). https://doi.org/10.1021/acs.jafc.7b02584
Q. Sun, X. Xiao, Y. Kim, D. Kim, K.S. Yoon, J.M. Clark, Y. Park, Imidacloprid promotes high fat diet-induced adiposity and insulin resistance in male C57BL/6J Mice. J Agric Food Chem 64(49), 9293–9306 (2016). https://doi.org/10.1021/acs.jafc.6b04322
S. Yan, S. Tian, Z. Meng, J. Yan, M. Jia, R. Li, Z. Zhou, W. Zhu, Imbalance of gut microbiota and fecal metabolites in offspring female mice induced by nitenpyram exposure during pregnancy. Chemosphere 260, 127506 (2020). https://doi.org/10.1016/j.chemosphere.2020.127506
S. Yan, S. Tian, Z. Meng, M. Teng, W. Sun, M. Jia, Z. Zhou, S. Bi, W. Zhu, Exposure to nitenpyram during pregnancy causes colonic mucosal damage and non-alcoholic steatohepatitis in mouse offspring: The role of gut microbiota. Environ Pollut 271, 116306 (2021). https://doi.org/10.1016/j.envpol.2020.116306
S. Kitauchi, M. Maeda, T. Hirano, Y. Ikenaka, M. Nishi, A. Shoda, M. Murata, Y. Mantani, T. Yokoyama, Y. Tabuchi, N. Hoshi, Effects of in utero and lactational exposure to the no-observed-adverse-effect level (NOAEL) dose of the neonicotinoid clothianidin on the reproductive organs of female mice. J Vet Med Sci 83(4), 746–753 (2021). https://doi.org/10.1292/jvms.21-0014
M. Shamsi, M. Soodi, S. Shahbazi, A. Omidi, Effect of Acetamiprid on spatial memory and hippocampal glutamatergic system. Environ Sci Pollut Res Int 28(22), 27933–27941 (2021). https://doi.org/10.1007/s11356-020-12314-6
National Toxicology, P.: Bioassay of nithiazide for possible carcinogenicity. Natl Cancer Inst Carcinog Tech Rep Ser 146, 1–107 (1979).
Author contributions
R.A.M., B.S.S., E.G.M., and P.C.L. designed, wrote, and approve the final version of this mini-review.
Funding
This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico- CNPq, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior- CAPES, and Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro- FAPERJ.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Miranda, R.A., Silva, B.S., de Moura, E.G. et al. Pesticides as endocrine disruptors: programming for obesity and diabetes. Endocrine 79, 437–447 (2023). https://doi.org/10.1007/s12020-022-03229-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12020-022-03229-y