Skip to main content
Log in

The role of copeptin in kidney disease

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Copeptin is a 39-amino acid glycopeptide that is secreted equimolecularly with arginine-vasopressin (AVP) from the prepro-hormone AVP in the posterior pituitary. While AVP is a very unstable molecule and is accompanied by significant technical troubles in its quantification, copeptin is a stable and easily quantifiable molecule. For this reason, circulating copeptin is currently used as a surrogate for AVP in different pathological conditions, including renal diseases. In recent years it has been shown that copeptin is associated with an increased risk of developing chronic kidney disease in the general population. In addition, copeptin has also been associated with multiple renal diseases with relevant clinical consequences and potential therapeutic implications. In the present review, we update and summarize the clinical significance of copeptin as a surrogate marker for AVP concentrations in different kidney diseases, as well as in renal replacement therapy (hemodialysis and peritoneal dialysis) and renal transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D.A. Holwerda, A glycopeptide from the posterior lobe of pig pituitaries. I. Isolation and characterization. Eur. J. Biochem. 28, 334–339 (1972)

    Article  CAS  PubMed  Google Scholar 

  2. H. Land, G. Schütz, H. Schmale, D. Richter, Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 295, 299–303 (1982)

    Article  CAS  PubMed  Google Scholar 

  3. M. Glavaš, A. Gitlin-Domagalska, D. Dębowski, N. Ptaszyńska, A. Łęgowska, K. Rolka, Vasopressin and its analogues: from natural hormones to multitasking peptides. Int. J. Mol. Sci. 23, 3068 (2022). https://doi.org/10.3390/ijms23063068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Iovino, G. Lisco, V.A. Giagulli, A. Vanacore, A. Pesce, E. Guastamacchia, G. De Pergola, V. Triggiani,Angiotensin II-vasopressin interactions in the regulation of cardiovascular functions. Evidence for an impaired hormonal sympathetic reflex in hypertension and congestive heart failure. Endocr. Metab. Immune Disord. Drug Targets 21, 1830–1844 (2021)

    Article  PubMed  Google Scholar 

  5. S. Kim, C.H. Jo, G.H. Kim, The role of vasopressin V2 receptor in drug-induced hyponatremia. Front. Physiol. 12, 797039 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  6. E. Łukaszyk, J. Małyszko, Copeptin: pathophysiology and potential clinical impact. Adv. Med. Sci. 60, 335–341 (2015)

    Article  PubMed  Google Scholar 

  7. R. Acher, J. Chauvet, Y. Rouille, Dynamic processing of neuropeptides: sequential conformation shaping of neurohypophysial preprohormones during intraneuronal secretory transport. J. Mol. Neurosci. 18, 223–228 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. N.G. Morgenthaler, Copeptin: a biomarker of cardiovascular and renal function. Congest Heart Fail. 16(Suppl 1), S37–S44 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. G. Szinnai, N.G. Morgenthaler, K. Berneis, J. Struck, B. Müller, U. Keller, M. Christ-Crain, Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J. Clin. Endocrinol. Metab. 92, 3973–3978 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. S. Balanescu, P. Kopp, M.B. Gaskill, N.G. Morgenthaler, C. Schindler, J. Rutishauser, Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and hyperosmolar states. J. Clin. Endocrinol. Metab. 96, 1046–1052 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. J. Siegenthaler, C. Walti, S.A. Urwyler, P. Schuetz, M. Christ-Crain, Copeptin concentrations during psychological stress: the PsyCo study. Eur. J. Endocrinol. 171, 737–742 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. D.A. Gomes, R.L. de Almeida Beltrão, F.M. de Oliveira Junior, J.C. da Silva Junior, E.P.C. de Arruda, E.C. Lira, M.J.A. da Rocha, Vasopressin and copeptin release during sepsis and septic shock. Peptides 136, 170437 (2021)

    Article  CAS  PubMed  Google Scholar 

  13. M. Christ-Crain, J. Refardt, B. Winzeler, Approach to the patient: “Utility of the Copeptin Assay”. J. Clin. Endocrinol. Metab. 107, 1727–1738 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  14. N.G. Morgenthaler, J. Struck, S. Jochberger, M.W. Dünser, Copeptin: clinical use of a new biomarker. Trends Endocrinol. Metab. 19, 43–49 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. I. Tasevska, S. Enhörning, A. Christensson, M. Persson, P.M. Nilsson, O. Melander, Increased levels of copeptin, a surrogate marker of arginine vasopressin, are associated with an increased risk of chronic kidney disease in a general population. Am. J. Nephrol. 44, 22–28 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. C. Engelbertz, E. Brand, M. Fobker, D. Fischer, H. Pavenstädt, H. Reinecke, Elevated copeptin is a prognostic factor for mortality even in patients with renal dysfunction. Int. J. Cardiol. 221, 327–332 (2016)

    Article  PubMed  Google Scholar 

  17. B. Afsar, Pathophysiology of copeptin in kidney disease and hypertension. Clin. Hypertens. 23, 2017 (2017). 13-017-0068-y. eCollection

    Article  Google Scholar 

  18. W. Fenske, J. Refardt, M. Christ-Crain, Copeptin in the diagnosis of diabetes insipidus. N. Engl. J. Med. 379, 1785–1786 (2018)

    Article  PubMed  Google Scholar 

  19. M. Christ-Crain, Vasopressin and copeptin in health and disease. Rev. Endocr. Metab. Disord. 20, 283–294 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. G.L. Robertson, E.A. Mahr, S. Athar, T. Sinha, Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest. 52, 2340–2352 (1973)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. N.G. Morgenthaler, J. Struck, C. Alonso, A. Bergmann, Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. R. Ivell, D. Richter, Structure and comparison of the oxytocin and vasopressin genes from rat. Proc. Natl Acad. Sci. USA 81, 2006–2010 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Christ-Crain, W. Fenske, Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat. Rev. Endocrinol. 12, 168–176 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. C.O. Sailer, J. Refardt, C.A. Blum, I. Schnyder, J.A. Molina-Tijeras, W. Fenske, M. Christ-Crain, Validity of different copeptin assays in the differential diagnosis of the polyuria-polydipsia syndrome. Sci. Rep. 11, 10104-021-89505-9 (2021)

    Article  Google Scholar 

  25. D. Mu, J. Cheng, L. Qiu, X. Cheng, Copeptin as a diagnostic and prognostic biomarker in cardiovascular diseases. Front. Cardiovasc. Med. 9, 901990 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. L. Bonnet, E. Marquant, J. Fromonot, I. Hamouda, J. Berbis, A. Godefroy, M. Vierge, M. Tsimaratos, R. Reynaud, Copeptin assays in children for the differential diagnosis of polyuria-polydipsia syndrome and reference levels in hospitalized children. Clin. Endocrinol. 96, 47–53 (2022)

    Article  CAS  Google Scholar 

  27. S. Jochberger, N.G. Morgenthaler, V.D. Mayr, G. Luckner, V. Wenzel, H. Ulmer, S. Schwarz, W.R. Hasibeder, B.E. Friesenecker, M.W. Dünser, Copeptin and arginine vasopressin concentrations in critically ill patients. J. Clin. Endocrinol. Metab. 91, 4381–4386 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. R. Roussel, L. Fezeu, M. Marre, G. Velho, F. Fumeron, P. Jungers, O. Lantieri, B. Balkau, N. Bouby, L. Bankir, D.G. Bichet, Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J. Clin. Endocrinol. Metab. 99, 4656–4663 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. S.S. Bhandari, I. Loke, J.E. Davies, I.B. Squire, J. Struck, L.L. Ng, Gender and renal function influence plasma levels of copeptin in healthy individuals. Clin. Sci. 116, 257–263 (2009)

    Article  CAS  Google Scholar 

  30. F. Piani, T. Reinicke, Y. Lytvyn, I. Melena, L.E. Lovblom, V. Lai, J. Tse, L. Cham, A. Orszag, B.A. Perkins, D.Z.I. Cherney, P. Bjornstad, Vasopressin associated with renal vascular resistance in adults with longstanding type 1 diabetes with and without diabetic kidney disease. J. Diabetes Complicat. 35, 107807 (2021)

    Article  CAS  Google Scholar 

  31. E. Meijer, S.J. Bakker, N. Halbesma, P.E. de Jong, J. Struck, R.T. Gansevoort, Copeptin, a surrogate marker of vasopressin, is associated with microalbuminuria in a large population cohort. Kidney Int. 77, 29–36 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. D. Zittema, E. van den Berg, E. Meijer, W.E. Boertien, A.C. Muller Kobold, C.F. Franssen, P.E. de Jong, S.J. Bakker, G. Navis, R.T. Gansevoort, Kidney function and plasma copeptin levels in healthy kidney donors and autosomal dominant polycystic kidney disease patients. Clin. J. Am. Soc. Nephrol. 9, 1553–1562 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. E. Meijer, S.J. Bakker, E.J. van der Jagt, G. Navis, P.E. de Jong, J. Struck, R.T. Gansevoort, Copeptin, a surrogate marker of vasopressin, is associated with disease severity in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 361–368 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. B. Ponte, M. Pruijm, D. Ackermann, P. Vuistiner, I. Guessous, G. Ehret, H. Alwan, S. Youhanna, F. Paccaud, M. Mohaupt, A. Péchère-Bertschi, B. Vogt, M. Burnier, P.Y. Martin, O. Devuyst, M. Bochud, Copeptin is associated with kidney length, renal function, and prevalence of simple cysts in a population-based study. J. Am. Soc. Nephrol. 26, 1415–1425 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. T. Schoen, E.M. Hohmann, S. Van Der Lely, S. Aeschbacher, A. Reusser, M. Risch, L. Risch, D. Conen, Plasma copeptin levels and ambulatory blood pressure characteristics in healthy adults. J. Hypertens. 33, 1571–1579 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. R. Roussel, N. Matallah, N. Bouby, R. El Boustany, L. Potier, F. Fumeron, K. Mohammedi, B. Balkau, M. Marre, L. Bankir, G. Velho, Plasma copeptin and decline in renal function in a cohort from the community: the prospective D.E.S.I.R. study. Am. J. Nephrol. 42, 107–114 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. R. El Boustany, I. Tasevska, E. Meijer, L.M. Kieneker, S. Enhörning, G. Lefèvre, K. Mohammedi, M. Marre, F. Fumeron, B. Balkau, N. Bouby, L. Bankir, S.J. Bakker, R. Roussel, O. Melander, R.T. Gansevoort, G. Velho, Plasma copeptin and chronic kidney disease risk in 3 European cohorts from the general population. JCI Insight 3, e121479 (2018). https://doi.org/10.1172/jci.insight.121479

    Article  PubMed  PubMed Central  Google Scholar 

  38. S. Enhörning, A. Christensson, O. Melander, Plasma copeptin as a predictor of kidney disease. Nephrol. Dial. Transpl. 34, 74–82 (2019)

    Article  Google Scholar 

  39. D. Zittema, W.E. Boertien, A.P. van Beek, R.P. Dullaart, C.F. Franssen, P.E. de Jong, E. Meijer, R.T. Gansevoort, Vasopressin, copeptin, and renal concentrating capacity in patients with autosomal dominant polycystic kidney disease without renal impairment. Clin. J. Am. Soc. Nephrol. 7, 906–913 (2012)

    Article  CAS  PubMed  Google Scholar 

  40. J.P. Arroyo, E.A. Akwo, A.S. Terker, A. Alsouqi, G. Bhave, R.C. Harris, A.M. Hung, T.A. Ikizler, Peripheral insulin resistance is associated with copeptin in patients with chronic kidney disease. Kidney360 2, 1434–1440 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  41. V. Krane, B. Genser, M.E. Kleber, C. Drechsler, W. März, G. Delgado, B. Allolio, C. Wanner, W. Fenske, 4D and LURIC study investigators, copeptin associates with cause-specific mortality in patients with impaired renal function: results from the LURIC and the 4D study. Clin. Chem. 63, 997–1007 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. E.M. Ettema, J. Heida, N.F. Casteleijn, L. Boesten, R. Westerhuis, C.A.J.M. Gaillard, R.T. Gansevoort, C.F.M. Franssen, D. Zittema, The effect of renal function and hemodialysis treatment on plasma vasopressin and copeptin levels. Kidney Int. Rep. 2, 410–419 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  43. W. Fenske, M. Quinkler, D. Lorenz, K. Zopf, U. Haagen, J. Papassotiriou, A.F. Pfeiffer, M. Fassnacht, S. Störk, B. Allolio, Copeptin in the differential diagnosis of the polydipsia-polyuria syndrome–revisiting the direct and indirect water deprivation tests. J. Clin. Endocrinol. Metab. 96, 1506–1515 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. S.M. Parizadeh, M. Ghandehari, M.R. Parizadeh, G.A. Ferns, M. Ghayour-Mobarhan, A. Avan, S.M. Hassanian, The diagnostic and prognostic value of copeptin in cardiovascular disease, current status, and prospective. J. Cell. Biochem. 119, 7913–7923 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. C. Kourtidou, M. Stangou, S. Marinaki, K. Tziomalos, Novel cardiovascular risk factors in patients with diabetic kidney disease. Int. J. Mol. Sci. 22, 11196 (2021). https://doi.org/10.3390/ijms222011196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. E. Golembiewska, A.R. Qureshi, L. Dai, B. Lindholm, O. Heimbürger, M. Söderberg, T.B. Brismar, J. Ripsweden, P. Barany, R.J. Johnson, P. Stenvinkel, Copeptin is independently associated with vascular calcification in chronic kidney disease stage 5. BMC Nephrol. 21, 43-020-1710-6 (2020)

    Article  Google Scholar 

  47. A. Whaley-Connell, J.R. Sowers, Basic science: pathophysiology: the cardiorenal metabolic syndrome. J. Am. Soc. Hypertens. 8, 604–606 (2014)

    Article  PubMed  Google Scholar 

  48. Z. Ricci, S. Romagnoli, C. Ronco, Cardiorenal syndrome. Crit. Care Clin. 37, 335–347 (2021)

    Article  PubMed  Google Scholar 

  49. H. Szmygin, J. Szydełko, B. Matyjaszek-Matuszek, Copeptin as a novel biomarker of cardiometabolic syndrome. Endokrynol. Pol. 72, 566–571 (2021)

    Article  CAS  PubMed  Google Scholar 

  50. S.G. Wannamethee, P. Welsh, O. Papacosta, L. Lennon, P.H. Whincup, N. Sattar, Copeptin, insulin resistance, and risk of incident diabetes in older men. J. Clin. Endocrinol. Metab. 100, 3332–3339 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. R.B. Mansur, L.B. Rizzo, C.M. Santos, E. Asevedo, G.R. Cunha, M.N. Noto, M. Pedrini, M. Zeni-Graiff, Q. Cordeiro, R.S. McIntyre, E. Brietzke, Plasma copeptin and metabolic dysfunction in individuals with bipolar disorder. Psychiatry Clin. Neurosci. 71, 624–636 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. S. Enhörning, L. Bankir, N. Bouby, J. Struck, B. Hedblad, M. Persson, N.G. Morgenthaler, P.M. Nilsson, O. Melander, Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmö Diet and Cancer Study cardiovascular cohort. Int. J. Obes. 37, 598–603 (2013)

    Article  Google Scholar 

  53. G.L. Robertson, Diabetes insipidus. Endocrinol. Metab. Clin. North Am. 24, 549–572 (1995)

    Article  CAS  PubMed  Google Scholar 

  54. D. Bockenhauer, D.G. Bichet, Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat. Rev. Nephrol. 11, 576–588 (2015)

    Article  CAS  PubMed  Google Scholar 

  55. M. Christ-Crain, B. Winzeler, J. Refardt, Diagnosis and management of diabetes insipidus for the internist: an update. J. Intern. Med. 290, 73–87 (2021)

    Article  CAS  PubMed  Google Scholar 

  56. K. Timper, W. Fenske, F. Kühn, N. Frech, B. Arici, J. Rutishauser, P. Kopp, B. Allolio, C. Stettler, B. Müller, M. Katan, M. Christ-Crain, Diagnostic accuracy of copeptin in the differential diagnosis of the polyuria-polydipsia syndrome: a prospective multicenter study. J. Clin. Endocrinol. Metab. 100, 2268–2274 (2015)

    Article  CAS  PubMed  Google Scholar 

  57. R. Pálsson, U.D. Patel, Cardiovascular complications of diabetic kidney disease. Adv. Chronic Kidney Dis. 21, 273–280 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  58. W.E. Boertien, I.J. Riphagen, I. Drion, A. Alkhalaf, S.J. Bakker, K.H. Groenier, J. Struck, P.E. de Jong, H.J. Bilo, N. Kleefstra, R.T. Gansevoort, Copeptin, a surrogate marker for arginine vasopressin, is associated with declining glomerular filtration in patients with diabetes mellitus (ZODIAC-33). Diabetologia 56, 1680–1688 (2013)

    Article  CAS  PubMed  Google Scholar 

  59. G. Velho, N. Bouby, S. Hadjadj, N. Matallah, K. Mohammedi, F. Fumeron, L. Potier, N. Bellili-Munoz, C. Taveau, F. Alhenc-Gelas, L. Bankir, M. Marre, R. Roussel, Plasma copeptin and renal outcomes in patients with type 2 diabetes and albuminuria. Diabetes Care 36, 3639–3645 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. G. Velho, R. El Boustany, G. Lefèvre, K. Mohammedi, F. Fumeron, L. Potier, L. Bankir, N. Bouby, S. Hadjadj, M. Marre, R. Roussel, Plasma copeptin, kidney outcomes, ischemic heart disease, and all-cause mortality in people with long-standing type 1 diabetes. Diabetes Care 39, 2288–2295 (2016)

    Article  CAS  PubMed  Google Scholar 

  61. R. Roussel, G. Velho, L. Bankir, Vasopressin and diabetic nephropathy. Curr. Opin. Nephrol. Hypertens. 26, 311–318 (2017)

    Article  CAS  PubMed  Google Scholar 

  62. M.L. Villela-Torres, A.E. Higareda-Mendoza, A. Gómez-García, A.R. Alvarez-Paredes, E. García-López, P. Stenvikel, H.F. Gu, A. Rashid-Qureshi, B. Lindholm, C. Alvarez-Aguilar, Copeptin plasma levels are associated with decline of renal function in patients with type 2 diabetes mellitus. Arch. Med. Res. 49, 36–43 (2018)

    Article  CAS  PubMed  Google Scholar 

  63. T. Noor, F. Hanif, Z. Kiran, R. Rehman, M.T. Khan, Z. Haque, K. Nankani, Relation of copeptin with diabetic and renal function markers among patients with diabetes mellitus progressing towards diabetic nephropathy. Arch. Med. Res. 51, 548–555 (2020)

    Article  CAS  PubMed  Google Scholar 

  64. G. Velho, S. Ragot, R. El Boustany, P.J. Saulnier, M. Fraty, K. Mohammedi, F. Fumeron, L. Potier, M. Marre, S. Hadjadj, R. Roussel, Plasma copeptin, kidney disease, and risk for cardiovascular morbidity and mortality in two cohorts of type 2 diabetes. Cardiovasc. Diabetol. 17, 110-018-0753-5 (2018)

    Article  Google Scholar 

  65. N.S. Heinrich, S. Theilade, S.A. Winther, N. Tofte, T.S. Ahluwalia, J.L. Jeppesen, F. Persson, T.W. Hansen, J.P. Goetze, P. Rossing, Copeptin and renal function decline, cardiovascular events and mortality in type 1 diabetes. Nephrol. Dial. Transpl. 37, 100–107 (2021)

    Article  Google Scholar 

  66. B.J. Feldman, S.M. Rosenthal, G.A. Vargas, R.G. Fenwick, E.A. Huang, M. Matsuda-Abedini, R.H. Lustig, R.S. Mathias, A.A. Portale, W.L. Miller, S.E. Gitelman, Nephrogenic syndrome of inappropriate antidiuresis. N. Engl. J. Med. 352, 1884–1890 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. S. Sethi, A.S. De Vriese, F.C. Fervenza, Acute glomerulonephritis. Lancet 399, 1646–1663 (2022)

    Article  PubMed  Google Scholar 

  68. B.D. Oortwijn, M.P. Rastaldi, A. Roos, D. Mattinzoli, M.R. Daha, C. van Kooten, Demonstration of secretory IgA in kidneys of patients with IgA nephropathy. Nephrol. Dial. Transplant. 22, 3191–3195 (2007)

    Article  CAS  PubMed  Google Scholar 

  69. J. Floege, S. Wied, T. Rauen, Assessing prognosis in IgA nephropathy. Kidney Int. 102, 22–24 (2022)

    Article  PubMed  Google Scholar 

  70. D. Zittema, J.A. van den Brand, S.J. Bakker, J.F. Wetzels, R.T. Gansevoort, Copeptin, a surrogate marker for arginine vasopressin, is associated with disease severity and progression in IgA nephropathy patients. Nephrol. Dial. Transplant. 32, i146–i153 (2017)

    CAS  PubMed  Google Scholar 

  71. E. Cornec-Le Gall, A. Alam, R.D. Perrone, Autosomal dominant polycystic kidney disease. Lancet 393, 919–935 (2019)

    Article  PubMed  Google Scholar 

  72. X. Wang, Y. Wu, C.J. Ward, P.C. Harris, V.E. Torres, Vasopressin directly regulates cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 19, 102–108 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. V.E. Torres, P.C. Harris, Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J. Am. Soc. Nephrol. 25, 18–32 (2014)

    Article  CAS  PubMed  Google Scholar 

  74. V.E. Torres, A.B. Chapman, O. Devuyst, R.T. Gansevoort, J.J. Grantham, E. Higashihara, R.D. Perrone, H.B. Krasa, J. Ouyang, F.S. Czerwiec, TEMPO 3:4 trial investigators, tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 367, 2407–2418 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. V.E. Torres, E. Higashihara, O. Devuyst, A.B. Chapman, R.T. Gansevoort, J.J. Grantham, R.D. Perrone, J. Ouyang, J.D. Blais, F.S. Czerwiec, TEMPO 3:4 trial investigators, effect of tolvaptan in autosomal dominant polycystic kidney disease by CKD stage: results from the TEMPO 3:4 trial. Clin. J. Am. Soc. Nephrol. 11, 803–811 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. W.E. Boertien, E. Meijer, D. Zittema, M.A. van Dijk, T.J. Rabelink, M.H. Breuning, J. Struck, S.J. Bakker, D.J. Peters, P.E. de Jong, R.T. Gansevoort, Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 27, 4131–4137 (2012)

    Article  CAS  PubMed  Google Scholar 

  77. W.E. Boertien, E. Meijer, J. Li, J.E. Bost, J. Struck, M.F. Flessner, R.T. Gansevoort, V.E. Torres, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease CRISP, Relationship of copeptin, a surrogate marker for arginine vasopressin, with change in total kidney volume and GFR decline in autosomal dominant polycystic kidney disease: results from the CRISP cohort. Am. J. Kidney Dis. 61, 420–429 (2013)

    Article  CAS  PubMed  Google Scholar 

  78. R.T. Gansevoort, M.D.A. van Gastel, A.B. Chapman, J.D. Blais, F.S. Czerwiec, E. Higashihara, J. Lee, J. Ouyang, R.D. Perrone, K. Stade, V.E. Torres, O. Devuyst, TEMPO 3:4 investigators, plasma copeptin levels predict disease progression and tolvaptan efficacy in autosomal dominant polycystic kidney disease. Kidney Int. 96, 159–169 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. D.A. Gomes, R.L. de Almeida Beltrão, F.M. de Oliveira Junior, J.C. da Silva Junior, E.P.C. de Arruda, E.C. Lira, M.J.A. da Rocha, Vasopressin and copeptin release during sepsis and septic shock. Peptides 136, 170437 (2021)

    Article  CAS  PubMed  Google Scholar 

  80. B. Meyer, P. Wexberg, N.G. Morgenthaler, A. Bergmann, G. Heinz, J. Struck, R. Pacher, M. Huelsmann, Copeptin as a marker of shock and predictor of adverse outcome in critically ill patients. Crit. Care 12(Suppl 2), 438 (2008)

    Article  Google Scholar 

  81. B. Meyer, A. Bergmann, P. Wexberg, J. Struck, N.G. Morgenthaler, G. Heinz, R. Pacher, M. Huelsmann, Copeptin and acute renal failure in critically ill patients. Crit. Care 12(Suppl 2), 439 (2008)

    Article  Google Scholar 

  82. F. Artunc, A. Nowak, C. Mueller, T. Breidthardt, R. Twerenbold, R. Wagner, A. Peter, H.U. Haering, S. Ebmeyer, B. Friedrich, Plasma concentrations of the vasoactive peptide fragments mid-regional pro-adrenomedullin, C-terminal pro-endothelin 1 and copeptin in hemodialysis patients: associated factors and prediction of mortality. PLoS ONE 9, e86148 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  83. M. Fijałkowski, K. Safranow, B. Lindholm, K. Ciechanowski, A.M. Muraszko, B. Dołęgowska, K. Dołęgowska, E. Golembiewska, Dialysate copeptin and peritoneal transport in incident peritoneal dialysis patients. Int. Urol. Nephrol. 51, 1667–1673 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  84. E.M. Ettema, J. Kuipers, S. Assa, S.J. Bakker, H. Groen, R. Westerhuis, C.A. Gaillard, R.T. Gansevoort, C.F. Franssen, Changes in plasma copeptin levels during hemodialysis: are the physiological stimuli active in hemodialysis patients? PLoS ONE 10, e0127116 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  85. W. Fenske, C. Wanner, B. Allolio, C. Drechsler, K. Blouin, J. Lilienthal, V. Krane, German diabetes, dialysis study investigators, copeptin levels associate with cardiovascular events in patients with ESRD and type 2 diabetes mellitus. J. Am. Soc. Nephrol. 22, 782–790 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. E. Meijer, S.J. Bakker, P.E. de Jong, J.J. Homan van der Heide, W.J. van Son, J. Struck, S.P. Lems, R.T. Gansevoort, Copeptin, a surrogate marker of vasopressin, is associated with accelerated renal function decline in renal transplant recipients. Transplantation 88, 561–567 (2009)

    Article  CAS  PubMed  Google Scholar 

  87. M.W. Dünser, C.A. Schmittinger, C. Torgersen, Copeptin and the transplanted kidney: friends or foes? Transplantation 88, 455–456 (2009)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Iglesias.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias, P., Silvestre, R.A., Fernández-Reyes, M.J. et al. The role of copeptin in kidney disease. Endocrine 79, 420–429 (2023). https://doi.org/10.1007/s12020-022-03219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03219-0

Keywords

Navigation