Skip to main content

Advertisement

Log in

Sorafenib decreases glycemia by impairing hepatic glucose metabolism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Sorafenib has been reported to reduce blood glucose levels in diabetic and non-diabetic patients in previous retrospective studies. However, the mechanism of which the hypoglycemic effects of sorafenib is not clearly explored. In this study, we investigated the effect of sorafenib on blood glucose levels in diabetic and normal mice and explored the possible mechanism.

Methods

We established a mouse model of type 2 diabetes by a high-fat diet combined with a low-dose of streptozotocin (STZ), to identify the hypoglycemic effect of sorafenib in different mice. Glucose tolerance, insulin tolerance and pyruvate tolerance tests were done after daily gavage with sorafenib to diabetic and control mice. To explore the molecular mechanism by which sorafenib regulates blood glucose levels, hepatic glucose metabolism signaling was studied by a series of in vivo and in vitro experiments.

Results

Sorafenib reduced blood glucose levels in both control and diabetic mice, particularly in the latter. The diabetic mice exhibited improved glucose and insulin tolerance after sorafenib treatment. Further studies showed that the expressions of gluconeogenesis-related enzymes, such as PCK1, G6PC and PCB, were significantly decreased upon sorafenib treatment. Mechanistically, sorafenib downregulates the expression of c-MYC downstream targets PCK1, G6PC and PCB through blocking the ERK/c-MYC signaling pathway, thereby playing its hypoglycemic effect by impairing hepatic glucose metabolism.

Conclusion

Sorafenib reduces blood glucose levels through downregulating gluconeogenic genes, especially in diabetic mice, suggesting the patients with T2DM when treated with sorafenib need more emphasis in monitoring blood glucose to avoid unnecessary hypoglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Escudier, F. Worden, M. Kudo, Sorafenib: key lessons from over 10 years of experience. Expert Rev. Anticancer Ther. 19(2), 177–189 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. L. Liu, Y. Cao, C. Chen, X. Zhang, A. McNabola, D. Wilkie et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66(24), 11851–11858 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. B. Escudier, T. Eisen, W.M. Stadler, C. Szczylik, S. Oudard, M. Siebels et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356(2), 125–134 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. J.M. Llovet, S. Ricci, V. Mazzaferro, P. Hilgard, E. Gane, J.F. Blanc et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359(4), 378–390 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. P. Fallahi, S.M. Ferrari, F. Santini, A. Corrado, G. Materazzi, S. Ulisse et al. Sorafenib and thyroid cancer. BioDrugs 27(6), 615–628 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. J.T. Hartmann, M. Haap, H.G. Kopp, H.P. Lipp, Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr. Drug Metab. 10(5), 470–481 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. K.I. Fujita, H. Ishida, Y. Kubota, Y. Sasaki, Toxicities of Receptor Tyrosine Kinase Inhibitors in Cancer Pharmacotherapy: Management with Clinical Pharmacology. Curr. Drug Metab. 18(3), 186–198 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. N.M. Agostino, V.M. Chinchilli, C.J. Lynch, A. Koszyk-Szewczyk, R. Gingrich, J. Sivik et al. Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. J. Oncol. Pharm. Pract. 17(3), 197–202 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. D. Veneri, M. Franchini, E. Bonora, Imatinib and regression of type 2 diabetes. N. Engl. J. Med. 352(10), 1049–1050 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. M. Breccia, M. Muscaritoli, Z. Aversa, F. Mandelli, G. Alimena, Imatinib mesylate may improve fasting blood glucose in diabetic Ph+ chronic myelogenous leukemia patients responsive to treatment. J. Clin. Oncol. 22(22), 4653–4655 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. B. Billemont, J. Medioni, L. Taillade, D. Helley, J.B. Meric, O. Rixe et al. Blood glucose levels in patients with metastatic renal cell carcinoma treated with sunitinib. Br. J. Cancer 99(9), 1380–1382 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Templeton, M. Brändle, T. Cerny, S. Gillessen, Remission of diabetes while on sunitinib treatment for renal cell carcinoma. Ann. Oncol. 19(4), 824–825 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. M. Breccia, M. Muscaritoli, L. Cannella, C. Stefanizzi, A. Frustaci, G. Alimena, Fasting glucose improvement under dasatinib treatment in an accelerated phase chronic myeloid leukemia patient unresponsive to imatinib and nilotinib. Leuk. Res. 32(10), 1626–1628 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. R. Malek, S.N. Davis, Tyrosine kinase inhibitors under investigation for the treatment of type II diabetes. Expert Opin. Investig. Drugs 25(3), 287–296 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. M.S. Han, K.W. Chung, H.G. Cheon, S.D. Rhee, C.H. Yoon, M.K. Lee et al. Imatinib mesylate reduces endoplasmic reticulum stress and induces remission of diabetes in db/db mice. Diabetes 58(2), 329–336 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. R. Hägerkvist, S. Sandler, D. Mokhtari, N. Welsh, Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J. 21(2), 618–628 (2007)

    Article  PubMed  Google Scholar 

  17. D. Mokhtari, N. Welsh, Potential utility of small tyrosine kinase inhibitors in the treatment of diabetes. Clin. Sci. (Lond. Engl.: 1979) 118(4), 241–247 (2009)

    Article  Google Scholar 

  18. C. Louvet, G.L. Szot, J. Lang, M.R. Lee, N. Martinier, G. Bollag et al. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 105(48), 18895–18900 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. B.M. Duggan, J.F. Cavallari, K.P. Foley, N.G. Barra, J.D. Schertzer, RIPK2 Dictates Insulin Responses to Tyrosine Kinase Inhibitors in Obese Male Mice. Endocrinology 161(8), bqaa086 (2020).

  20. J.E. Gerich, Physiology of glucose homeostasis. Diabetes Obes. Metab. 2(6), 345–350 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. M. Roden, G.I. Shulman, The integrative biology of type 2 diabetes. Nature 576(7785), 51–60 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. P.V. Röder, B. Wu, Y. Liu, W. Han, Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 48(3), e219 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  23. F.C. Schuit, P. Huypens, H. Heimberg, D.G. Pipeleers, Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 50(1), 1–11 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. M. Alsahli, J.E. Gerich, Renal glucose metabolism in normal physiological conditions and in diabetes. Diabetes Res. Clin. Pract. 133, 1–9 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. J.E. Gerich, C. Meyer, H.J. Woerle, M. Stumvoll, Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24(2), 382–391 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. R.A. DeFronzo, D. Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2), S157–163 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K.E. Merz, D.C. Thurmond, Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 10(3), 785–809 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  28. A.D. Attie, P.E. Scherer, Adipocyte metabolism and obesity. J. Lipid Res. 50(Suppl), S395–399 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  29. H. Ruan, H.F. Lodish, Regulation of insulin sensitivity by adipose tissue-derived hormones and inflammatory cytokines. Curr. Opin. Lipidol. 15(3), 297–302 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. M.M. Adeva-Andany, N. Pérez-Felpete, C. Fernández-Fernández, C. Donapetry-García, C. Pazos-García, Liver glucose metabolism in humans. Biosci. Rep. 36(6), e00416 (2016).

  31. P.M. Titchenell, M.A. Lazar, M.J. Birnbaum, Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinol. Metab. 28(7), 497–505 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. Rui, Energy metabolism in the liver. Compr. Physiol. 4(1), 177–197 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  33. S.H. Koo, L. Flechner, L. Qi, X. Zhang, R.A. Screaton, S. Jeffries et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437(7062), 1109–1111 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. P. Puigserver, J. Rhee, J. Donovan, C.J. Walkey, J.C. Yoon, F. Oriente et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423(6939), 550–555 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. P. Workman, V.G. Brunton, D.J. Robins, Tyrosine kinase inhibitors. Semin. Cancer Biol. 3(6), 369–381 (1992)

    CAS  PubMed  Google Scholar 

  36. Y. Wu, L. Shi, Y. Zhao, P. Chen, R. Cui, M. Ji et al. Synergistic activation of mutant TERT promoter by Sp1 and GABPA in BRAF(V600E)-driven human cancers. NPJ Precis. Oncol. 5(1), 3 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. I. Magnusson, D.L. Rothman, L.D. Katz, R.G. Shulman, G.I. Shulman, Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Investig. 90(4), 1323–1327 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M.C. Petersen, D.F. Vatner, G.I. Shulman, Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13(10), 572–587 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. R.C. Sears, The life cycle of C-myc: from synthesis to degradation. Cell cycle (Georgetown. Tex.) 3(9), 1133–1137 (2004).

  40. D.M. Miller, S.D. Thomas, A. Islam, D. Muench, K. Sedoris, c-Myc and cancer metabolism. Clin. Cancer Res. 18(20), 5546–5553 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C.V. Dang, K.A. O’Donnell, K.I. Zeller, T. Nguyen, R.C. Osthus, F. Li, The c-Myc target gene network. Semin. Cancer Biol. 16(4), 253–264 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. A. Karbownik, A. Stachowiak, H. Urjasz, K. Sobańska, A. Szczecińska, T. Grabowski et al. The oxidation and hypoglycaemic effect of sorafenib in streptozotocin-induced diabetic rats. Pharmacol. Rep. 72(1), 254–259 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. T. Wang, K. Shankar, M.J. Ronis, H.M. Mehendale, Mechanisms and outcomes of drug- and toxicant-induced liver toxicity in diabetes. Crit. Rev. Toxicol. 37(5), 413–459 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. A.F. AlAsmari, N. Ali, F. AlAsmari, W.A. AlAnazi, F. Alqahtani, M. Alharbi, et al. Elucidation of the Molecular Mechanisms Underlying Sorafenib-Induced Hepatotoxicity. Oxidative Med. Cell. Long. 2020, 7453406 (2020).

  45. R.C. Osthus, H. Shim, S. Kim, Q. Li, R. Reddy, M. Mukherjee et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275(29), 21797–21800 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. E.S. Goetzman, E.V. Prochownik, The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues. Front. Endocrinol. 9, 129 (2018)

    Article  Google Scholar 

  47. J.J. Collier, T.T. Doan, M.C. Daniels, J.R. Schurr, J.K. Kolls, D.K. Scott, c-Myc is required for the glucose-mediated induction of metabolic enzyme genes. J. Biol. Chem. 278(8), 6588–6595 (2003)

    Article  CAS  PubMed  Google Scholar 

  48. E. Riu, T. Ferre, A. Hidalgo, A. Mas, S. Franckhauser, P. Otaegui et al. Overexpression of c-myc in the liver prevents obesity and insulin resistance. FASEB J. 17(12), 1715–1717 (2003)

    Article  CAS  PubMed  Google Scholar 

  49. E. Riu, T. Ferre, A. Mas, A. Hidalgo, S. Franckhauser, F. Bosch, Overexpression of c-myc in diabetic mice restores altered expression of the transcription factor genes that regulate liver metabolism. Biochem. J. 368(Pt 3), 931–937 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K.I. Ozaki, M. Awazu, M. Tamiya, Y. Iwasaki, A. Harada, S. Kugisaki et al. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 310(8), E643–e651 (2016)

    Article  PubMed  Google Scholar 

  51. L. Wu, S. Zhang, Q. Zhang, S. Wei, G. Wang, P. Luo, The Molecular Mechanism of Hepatic Lipid Metabolism Disorder Caused by NaAsO(2) through Regulating the ERK/PPAR Signaling Pathway. Oxid. Med. Cell. Longev. 2022, 6405911 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  52. S. Bini, V. Pecce, A. Di Costanzo, L. Polito, A. Ghadiri, I. Minicocci, et al. The Fibrinogen-like Domain of ANGPTL3 Facilitates Lipolysis in 3T3-L1 Cells by Activating the Intracellular Erk Pathway. Biomolecules 12(4), 585 (2022).

  53. H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B.B. Duncan et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022)

    Article  PubMed  Google Scholar 

  54. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. CA: Cancer J. Clin. 72(1), 7–33 (2022)

    Google Scholar 

  55. W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray et al. Cancer statistics in China. 2015. CA: Cancer J. Clin. 66(2), 115–132 (2016)

    Google Scholar 

  56. C. Rey-Reñones, J.M. Baena-Díez, I. Aguilar-Palacio, C. Miquel, M. Grau, Type 2 Diabetes Mellitus and Cancer: Epidemiology, Physiopathology and Prevention. Biomedicines 9(10), 1429 (2021).

  57. E.E. Vincent, H. Yaghootkar, Using genetics to decipher the link between type 2 diabetes and cancer: shared aetiology or downstream consequence? Diabetologia 63(9), 1706–1717 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  58. O. Salaami, C.L. Kuo, M.T. Drake, G.A. Kuchel, J.L. Kirkland, R.J. Pignolo, Antidiabetic Effects of the Senolytic Agent Dasatinib. Mayo Clin. Proc. 96(12), 3021–3029 (2021)

    Article  CAS  PubMed  Google Scholar 

  59. L. Yu, J. Liu, X. Huang, Q. Jiang, Adverse effects of dasatinib on glucose-lipid metabolism in patients with chronic myeloid leukaemia in the chronic phase. Sci. Rep. 9(1), 17601 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Natural Science Basis Research Program in Shaanxi Province of China for supporting of this work.

Funding

This work was supported by Natural Science Basis Research Program in Shaanxi Province of China (No. 2018JM7105 to R.L.).

Author information

Authors and Affiliations

Authors

Contributions

P.H. conceived and designed the experiments. J.M., F.S., and Y.L. Performed the experiments. M.Y. and R.L. analyzed the data. B.S. and P.H. contributed reagents and materials. P.H. wrote the paper. All authors read and approved the final paper.

Corresponding author

Correspondence to Peng Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All animal experimental procedures were approved by the Animal Ethics Committee of Xi’an Jiaotong University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Sui, F., Liu, Y. et al. Sorafenib decreases glycemia by impairing hepatic glucose metabolism. Endocrine 78, 446–457 (2022). https://doi.org/10.1007/s12020-022-03202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03202-9

Keywords

Navigation