Skip to main content
Log in

Ketogenic state improves testosterone serum levels—results from a systematic review and meta-analysis

  • Meta- Analysis
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

It is widely demonstrated that obesity and hypogonadism are bi-directionally correlated, since the hypogonadism prevalence is higher in obese population, while weight loss increases testosterone serum levels. Several approaches are available to contrast weight excess, from simple dietary regimens to more complex surgical procedures. Ketogenic diets (KD) fit in this context and their application is growing year after year, aiming to improve the metabolic and weight patterns in obese patients. However, KD influence on testosterone levels is still poorly investigated.

Objectives

To systematically evaluate the potential effect of KD on testosterone levels.

Methods

A systematic literature search was performed until April 2022 including studies investigating testosterone levels before and after KD. Secondary endpoints were body weight, estradiol and sex-hormone binding globulin serum levels. Any kind of KD was considered eligible, and no specific criteria for study populations were provided.

Results

Seven studies (including eight trials) were included in the analysis for a total of 230 patients, five using normocaloric KD and three very low calories KD (VLCKD). Only three studies enrolled overweight/obese men. A significant total testosterone increase was recorded after any kind of KD considering 111 patients (2.86 [0.95, 4.77], p = 0.003). This increase was more evident considering VLCKD compared to normocaloric KD (6.75 [3.31, 10.20], p < 0.001, versus 0.98 [0.08, 1.88], p = 0.030). Meta-regression analyses highlighted significant correlations between the post-KD testosterone raise with patients’ age (R-squared 36.4, p < 0.001) and weight loss (R-squared 73.6, p < 0.001).

Conclusions

Comprehensively, KD improved testosterone levels depending on both patients’ age and KD-induced weight loss. However, the lack of information in included studies on hormones of the hypothalamic-pituitary-gonadal axis prevents an exhaustive comprehension about mechanisms connecting ketosis and testosterone homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Ugo-Neff, D. Rizzolo, Hypogonadism in men: updates and treatments. Jaapa 35(5), 28–34 (2022)

    Article  Google Scholar 

  2. D.L. Pelzman, K. Hwang, Testosterone therapy: where do the latest guidelines agree and differ?. Curr. Opin. Endocrinol. Diabetes Obes. 27(6), 397–403 (2020)

    Article  Google Scholar 

  3. S. Bhasin et al. Testosterone therapy in men with hypogonadism: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 103(5), 1715–1744 (2018)

    Article  Google Scholar 

  4. J. Erenpreiss et al. Prevalence of testosterone deficiency among aging men with and without morbidities. Aging Male 23(5), 901–905 (2020)

    Article  Google Scholar 

  5. X. Chen et al. Hypothalamic mechanisms of obesity-associated disturbance of hypothalamic-pituitary-ovarian axis. Trends Endocrinol. Metab. 33(3), 206–217 (2022)

    Article  CAS  Google Scholar 

  6. L. Yuxin et al. Research progress on the relationship between obesity-inflammation-aromatase axis and male infertility. Oxid. Med Cell Longev. 2021, 6612796 (2021)

    Article  Google Scholar 

  7. L.T. van Hulsteijn et al. Prevalence of endocrine disorders in obese patients: systematic review and meta-analysis. Eur. J. Endocrinol. 182(1), 11–21 (2020)

    Article  Google Scholar 

  8. G. Corona et al. Treatment of functional hypogonadism besides pharmacological substitution. World J. Mens. Health 38(3), 256–270 (2020)

    Article  Google Scholar 

  9. G. Corona et al. The Role of testosterone treatment in patients with metabolic disorders. Expert Rev. Clin. Pharm. 14(9), 1091–1103 (2021)

    Article  CAS  Google Scholar 

  10. S. Sultan et al. Male obesity associated gonadal dysfunction and the role of bariatric surgery. Front Endocrinol. (Lausanne) 11, 408 (2020)

    Article  Google Scholar 

  11. G. Rastrelli et al. Metabolic syndrome in male hypogonadism. Front Horm. Res 49, 131–155 (2018)

    Article  CAS  Google Scholar 

  12. G. Corona et al. Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: a systematic review and meta-analysis. Eur. J. Endocrinol. 168(6), 829–843 (2013)

    Article  CAS  Google Scholar 

  13. D.H. Ryan, S. Kahan, Guideline recommendations for obesity management. Med Clin. North Am. 102(1), 49–63 (2018)

    Article  Google Scholar 

  14. A. Thorell et al. Guidelines for perioperative care in bariatric surgery: Enhanced Recovery After Surgery (ERAS) society recommendations. World J. Surg. 40(9), 2065–2083 (2016)

    Article  CAS  Google Scholar 

  15. S.B. Heymsfield, T.A. Wadden, Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med 376(3), 254–266 (2017)

    Article  CAS  Google Scholar 

  16. A. Basolo, et al. Ketogenic diet and weight loss: is there an effect on energy expenditure? Nutrients 14, 1814 (2022).

    Article  CAS  Google Scholar 

  17. A. Paoli et al. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 67(8), 789–796 (2013)

    Article  CAS  Google Scholar 

  18. M. Caprio et al. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J. Endocrinol. Investig. 42(11), 1365–1386 (2019)

    Article  CAS  Google Scholar 

  19. K.J. Bough, J.M. Rho, Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 48(1), 43–58 (2007)

    Article  CAS  Google Scholar 

  20. K.L. Harvey, L.E. Holcomb, S.C. Kolwicz, Jr, Ketogenic diets and exercise performance. Nutrients 11(10), 2296 (2019)

  21. A. Zajac et al. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients 6(7), 2493–2508 (2014)

    Article  CAS  Google Scholar 

  22. A.G. Tsai, T.A. Wadden, The evolution of very-low-calorie diets: an update and meta-analysis. Obesity 14(8), 1283–1293 (2006)

    Article  Google Scholar 

  23. L.M. Mongioì et al. Effectiveness of a very low calorie ketogenic diet on testicular function in overweight/obese men. Nutrients 12(10), 2967 (2020)

  24. S. La Vignera et al. The ketogenic diet corrects metabolic hypogonadism and preserves pancreatic ß-cell function in overweight/obese men: a single-arm uncontrolled study. Endocrine 72(2), 392–399 (2021)

    Article  Google Scholar 

  25. K. Durkalec-Michalski et al. Is a four-week ketogenic diet an effective nutritional strategy in crossfit-trained female and male athletes? Nutrients 13(3), 864 (2021)

  26. A. Paoli et al. Effects of two months of very low carbohydrate ketogenic diet on body composition, muscle strength, muscle area, and blood parameters in competitive natural body builders. Nutrients 13(2), 374 (2021)

  27. V. Vidić et al. Effects of calorie restricted low carbohydrate high fat ketogenic vs. non-ketogenic diet on strength, body-composition, hormonal and lipid profile in trained middle-aged men. Clin. Nutr. 40(4), 1495–1502 (2021)

    Article  Google Scholar 

  28. J.M. Wilson et al. Effects of ketogenic dieting on body composition, strength, power, and hormonal profiles in resistance training men. J. Strength Cond. Res 34(12), 3463–3474 (2020)

    Article  Google Scholar 

  29. N.K. Kumar et al. Adherence to low-carbohydrate diets in patients with diabetes: a narrative review. Diabetes Metab. Syndr. Obes. 15, 477–498 (2022)

    Article  CAS  Google Scholar 

  30. J. Whittaker, M. Harris, Low-carbohydrate diets and men’s cortisol and testosterone: systematic review and meta-analysis. Nutr. Health 2601060221083079 (2022)

  31. J. Sterling, A.M. Bernie, R. Ramasamy, Hypogonadism: easy to define, hard to diagnose, and controversial to treat. Can. Urol. Assoc. J. 9(1-2), 65–68 (2015)

    Article  Google Scholar 

  32. P. Dandona et al. Hypogonadotrophic hypogonadism in type 2 diabetes, obesity and the metabolic syndrome. Curr. Mol. Med. 8(8), 816–828 (2008)

    Article  CAS  Google Scholar 

  33. S. Dhindsa et al. Testosterone concentrations in diabetic and nondiabetic obese men. Diabetes Care 33(6), 1186–1192 (2010)

    Article  CAS  Google Scholar 

  34. G. Corona et al. Testosterone and metabolic syndrome: a meta-analysis study. J. Sex. Med. 8(1), 272–283 (2011)

    Article  CAS  Google Scholar 

  35. V.A. Giagulli, J.M. Kaufman, A. Vermeulen, Pathogenesis of the decreased androgen levels in obese men. J. Clin. Endocrinol. Metab. 79(4), 997–1000 (1994)

    CAS  Google Scholar 

  36. V.A. Giagulli et al. Weight loss more than glycemic control may improve testosterone in obese type 2 diabetes mellitus men with hypogonadism. Andrology 8(3), 654–662 (2020)

    Article  CAS  Google Scholar 

  37. C. Pelusi et al. Clomiphene citrate effect in obese men with low serum testosterone treated with metformin due to dysmetabolic disorders: A randomized, double-blind, placebo-controlled study. PLoS ONE 12(9), e0183369 (2017)

    Article  Google Scholar 

  38. R. Cannarella et al. Effects of the selective estrogen receptor modulators for the treatment of male infertility: a systematic review and meta-analysis. Expert Opin. Pharmacother. 20(12), 1517–1525 (2019)

    Article  CAS  Google Scholar 

  39. J.M. Freeman, E.H. Kossoff, Ketosis and the ketogenic diet, 2010: advances in treating epilepsy and other disorders. Adv. Pediatr. 57(1), 315–329 (2010)

    Article  Google Scholar 

  40. S. D’Andrea et al. Endogenous transient doping: physical exercise acutely increases testosterone levels-results from a meta-analysis. J. Endocrinol. Investig. 43(10), 1349–1371 (2020)

    Article  Google Scholar 

  41. A.H. Payne, D.B. Hales, Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 25(6), 947–970 (2004)

    Article  CAS  Google Scholar 

  42. W.L. Miller, R.J. Auchus, The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32(1), 81–151 (2011)

    Article  CAS  Google Scholar 

  43. T. Dong et al. The effects of low-carbohydrate diets on cardiovascular risk factors: a meta-analysis. PLoS ONE 15(1), e0225348 (2020)

    Article  CAS  Google Scholar 

  44. D. Ciocan et al. Modulation of the bile acid enterohepatic cycle by intestinal microbiota alleviates alcohol liver disease. Cells 11(6), 968 (2022)

  45. Y. Lin et al. Dietary fibre supplementation improves semen production by increasing leydig cells and testosterone synthesis in a growing boar model. Front. Vet. Sci. 9, 850685 (2022)

    Article  Google Scholar 

  46. L.J. de Souza et al. Effect of dietary fiber on fecal androgens levels: an experimental analysis in brown brocket deer (Mazama gouazoubira). Gen. Comp. Endocrinol. 321-322, 114029 (2022)

    Article  Google Scholar 

  47. N.E. Allen, T.J. Key, The effects of diet on circulating sex hormone levels in men. Nutr Res Rev 13(2), 159–184 (2000).

    Article  CAS  Google Scholar 

  48. T.J. Key et al. Testosterone, sex hormone-binding globulin, calculated free testosterone, and oestradiol in male vegans and omnivores. Br. J. Nutr. 64(1), 111–119 (1990)

    Article  CAS  Google Scholar 

  49. C. Wang et al. Low-fat high-fiber diet decreased serum and urine androgens in men. J. Clin. Endocrinol. Metab. 90(6), 3550–3559 (2005)

    Article  CAS  Google Scholar 

  50. D.A. Cutler, S.M. Pride, A.P. Cheung, Low intakes of dietary fiber and magnesium are associated with insulin resistance and hyperandrogenism in polycystic ovary syndrome: a cohort study. Food Sci. Nutr. 7(4), 1426–1437 (2019)

    Article  CAS  Google Scholar 

  51. K.S. Al Aamri et al. The effect of low-carbohydrate ketogenic diet in the management of obesity compared with low caloric, low-fat diet. Clin. Nutr. ESPEN 49, 522–528 (2022)

    Article  Google Scholar 

  52. A. Jayedi et al. Dose-dependent effect of carbohydrate restriction for type 2 diabetes management: a systematic review and dose-response meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 116(1), 40–56 (2022).

    Article  Google Scholar 

  53. B. O’Neill, P. Raggi, The ketogenic diet: pros and cons. Atherosclerosis 292, 119–126 (2020)

    Article  Google Scholar 

  54. M. Grossmann et al. Low testosterone levels are common and associated with insulin resistance in men with diabetes. J. Clin. Endocrinol. Metab. 93(5), 1834–1840 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Greco.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furini, C., Spaggiari, G., Simoni, M. et al. Ketogenic state improves testosterone serum levels—results from a systematic review and meta-analysis. Endocrine 79, 273–282 (2023). https://doi.org/10.1007/s12020-022-03195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03195-5

Keywords

Navigation