Skip to main content

Advertisement

Log in

Integrated bioinformatics analysis and screening of hub genes in polycystic ovary syndrome

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders, posing a serious threat to the health of women. Herein, we aimed to explore new biomarkers and potential therapeutic targets for PCOS by employing integrated bioinformatics tools.

Methods

Three gene expression profile datasets (GSE138518, GSE155489, GSE106724) were obtained from the Gene Expression Omnibus database and the differentially expressed genes in PCOS and normal groups with an adjusted p-value < 0.05 and a |log fold change (FC) | > 1.2 were first identified using the DESeq package. The weighted correlation network analysis (WGCNA) R package was used to identify clusters of highly correlated genes or modules associated with PCOS. Protein-protein interaction (PPI) network analysis and visualization of genes in the key module were performed using the STRINGdb database and the NetworkX package (edge > 5), respectively. The genes overlapping among the key module genes and PCOS-associated genes were further analyzed. Ligand molecules with strong binding energy < −10 kJ/mol to GNB3 were screened in the drug library using MTiOpenScreen. AutoDock, ChimeraX, and BIOVIA Discovery Studio Visualizer were further used to elucidate the mechanism of ligand interaction with GNB3. Finally, the relationship between GNB3 and PCOS was verified using experimental models in vivo and in vitro.

Results

Of the 11 modules identified by WGCNA, the black module had the highest correlation with PCOS (correlation = 0.96, P = 0.00016). The PPI network of 351 related genes revealed that VCL, GNB3, MYH11, LMNA, MLLT4, EZH2, PAK3, and CHRM1 have important roles in PCOS. The hub gene GNB3 was identified by taking the intersection of PCOS-related gene sets. MTiOpenScreen revealed that five compounds interacted with GNB3. Of these five, compound 1 had the strongest binding ability and can bind amino acids in the WD40 motif of GNB3, which in turn affects the function of the G protein-coupled receptor β subunit. GNB3 was also significantly downregulated in PCOS models.

Conclusion

We identified the hub gene GNB3 as the most important regulatory gene in PCOS. We suggest that compound 1 can target the WD40 motif of GNB3 to affect related functions and must be considered as a lead compound for drug development. This study will provide new insights into the development of PCOS-related drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available online. Contact with correspondence author for any data and material on reasonable request.

Abbreviations

PCOS:

Polycystic ovary syndrome

GCs:

Granulosa cells

DEGs:

Differentially expressed genes

BMI:

Body mass index

WGCNA:

Weighted gene co-expression network analysis

GEO:

Gene Expression Omnibus

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

PPI:

Protein–Protein Interaction.

References

  1. L.G. Cooney, A. Dokras, Beyond fertility: Polycystic ovary syndrome and long-term health. Fertil. Steril. 110, 794–809 (2018)

    Article  PubMed  Google Scholar 

  2. O. Osibogun, O. Ogunmoroti, E.D. Michos, Polycystic ovary syndrome and cardiometabolic risk: Opportunities for cardiovascular disease prevention. Trends Cardiovascular Med. 30, 399–404 (2020)

    Article  Google Scholar 

  3. E.M. Heijnen, M.J. Eijkemans, E.G. Hughes, J.S. Laven, N.S. Macklon, B.C. Fauser, A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Hum. Reprod. Update 12, 13–21 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. M.L. Pfieffer, Polycystic ovary syndrome: An update. Nursing 49, 34–40 (2019)

    Article  PubMed  Google Scholar 

  5. S.U.A. Rasool, S. Ashraf, M. Nabi, F. Rashid, K.M. Fazili, S. Amin, Elevated fasting insulin is associated with cardiovascular and metabolic risk in women with polycystic ovary syndrome. Diabetes Metab. Syndr. 13, 2098–2105 (2019)

    Article  PubMed  Google Scholar 

  6. R.P. Crespo, T. Bachega, B.B. Mendonça, L.G. Gomes, An update of genetic basis of PCOS pathogenesis. Arch. Endocrinol. Metab. 62, 352–361 (2018)

    Article  PubMed  Google Scholar 

  7. E. Stener-Victorin, Q. Deng, Epigenetic inheritance of polycystic ovary syndrome - challenges and opportunities for treatment. Nat. Rev. Endocrinol. 17, 521–533 (2021)

    Article  PubMed  Google Scholar 

  8. D.H. Abbott, M. Kraynak, D.A. Dumesic, J.E. Levine, In utero androgen excess: A developmental commonality preceding polycystic ovary syndrome? Front. Horm. Res. 53, 1–17 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D. Dewailly, [Physiopathology of polycystic ovary syndrome]. Annales d’endocrinologie 60, 123–130 (1999)

    CAS  PubMed  Google Scholar 

  10. G. Pei, L. Chen, W. Zhang, WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol. 585, 135–158 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. B. Zhang, S. Horvath, A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17 (2005)

    Article  PubMed  Google Scholar 

  12. P. Langfelder, S. Horvath, WGCNA: An R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008)

    Article  Google Scholar 

  13. J.S. Amberger, C.A. Bocchini, F. Schiettecatte, A.F. Scott, A. Hamosh, OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic acids Res. 43, D789–798 (2015)

    Article  PubMed  Google Scholar 

  14. S. Federhen, The NCBI taxonomy database. Nucleic acids Res. 40, D136–143 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. Z. Mao, T. Li, H. Zhao, Y. Qin, X. Wang, Y. Kang, Identification of epigenetic interactions between microRNA and DNA methylation associated with polycystic ovarian syndrome. J. Hum. Genet. 66, 123–137 (2021)

    Article  CAS  PubMed  Google Scholar 

  16. J. Li, H. Chen, M. Gou, C. Tian, H. Wang, X. Song, D.L. Keefe, X. Bai, L. Liu, Molecular features of polycystic ovary syndrome revealed by transcriptome analysis of oocytes and cumulus cells. Front. Cell Developmental Biol. 9, 735684 (2021)

    Article  Google Scholar 

  17. L. Jin, Q. Yang, C. Zhou, L. Liu, H. Wang, M. Hou, Y. Wu, F. Shi, J. Sheng, H. Huang, Profiles for long non-coding RNAs in ovarian granulosa cells from women with PCOS with or without hyperandrogenism. Reprod. biomedicine online 37, 613–623 (2018)

    Article  CAS  Google Scholar 

  18. A. Alameer, D. Chicco. geoCancerPrognosticDatasetsRetriever, a bioinformatics tool to easily identify cancer prognostic datasets on Gene Expression Omnibus (GEO). (Bioinformatics, Oxford, England), 2021)

    Google Scholar 

  19. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–1056 (2015)

  20. M. Kanehisa, S. Goto, KEGG: Kyoto encyclopedia of genes and genomes. Nucleic acids Res. 28, 27–30 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Piñero, J. Saüch, F. Sanz, L.I. Furlong, The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Computational Struct. Biotechnol. J. 19, 2960–2967 (2021)

    Article  Google Scholar 

  22. J.D. Storey, R. Tibshirani, Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D. Szklarczyk, A.L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N.T. Doncheva, J.H. Morris, P. Bork, L.J. Jensen, C.V. Mering, STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–d613 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. C.M. Labbé, J. Rey, D. Lagorce, M. Vavruša, J. Becot, O. Sperandio, B.O. Villoutreix, P. Tufféry, M.A. Miteva, MTiOpenScreen: A web server for structure-based virtual screening. Nucleic Acids Res. 43, W448–454 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  25. O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Computational Chem. 31, 455–461 (2010)

    CAS  Google Scholar 

  26. H. Kemmish, M. Fasnacht, L. Yan, Fully automated antibody structure prediction using BIOVIA tools: Validation study. PloS one 12, e0177923 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  27. E.F. Pettersen, T.D. Goddard, C.C. Huang, E.C. Meng, G.S. Couch, T.I. Croll, J.H. Morris, T.E. Ferrin, UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein science: a publication of the Protein. Society 30, 70–82 (2021)

    CAS  Google Scholar 

  28. A.M.S. Riel, D.A. Decato, J. Sun, C.J. Massena, M.J. Jessop, O.B. Berryman, The intramolecular hydrogen bonded-halogen bond: A new strategy for preorganization and enhanced binding. Chem. Sci. 9, 5828–5836 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y.L. Yang, L.F. Sun, Y. Yu, T.X. Xiao, B.B. Wang, P.G. Ren, H.R. Tang, J.V. Zhang, Deficiency of Gpr1 improves steroid hormone abnormality in hyperandrogenized mice. Reprod. Biol. Endocrinol.: RBE 16, 50 (2018)

    Article  Google Scholar 

  30. A.C. Ozdemir, G.M. Wynn, A. Vester, M.N. Weitzmann, G.N. Neigh, S. Srinivasan, M.K. Rudd, GNB3 overexpression causes obesity and metabolic syndrome. PloS one 12, e0188763 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  31. C. Xu, J. Min, Structure and function of WD40 domain proteins. Protein cell 2, 202–214 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Schapira, M. Tyers, M. Torrent, C.H. Arrowsmith, WD40 repeat domain proteins: a novel target class? Nat. Rev. Drug Discov. 16, 773–786 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. B.P. Jain, S. Pandey, WD40 Repeat Proteins: Signalling scaffold with diverse functions. Protein J. 37, 391–406 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. V. Migliori, M. Mapelli, E. Guccione, On WD40 proteins: Propelling our knowledge of transcriptional control? Epigenetics 7, 815–822 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M.A. Villamil, Q. Liang, Z. Zhuang, The WD40-repeat protein-containing deubiquitinase complex: catalysis, regulation, and potential for therapeutic intervention. Cell Biochem. Biophys. 67, 111–126 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. H. Tummala, S. Fleming, P.M. Hocking, D. Wehner, Z. Naseem, M. Ali, C.F. Inglehearn, N. Zhelev, D.H. Lester, The D153del mutation in GNB3 gene causes tissue specific signalling patterns and an abnormal renal morphology in Rge chickens. PloS one 6, e21156 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Klenke, M. Kussmann, W. Siffert, The GNB3 C825T polymorphism as a pharmacogenetic marker in the treatment of hypertension, obesity, and depression. Pharmacogenetics genomics 21, 594–606 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. K.D. Ko, K.K. Kim, H.S. Suh, I.C. Hwang, Associations between the GNB3 C825T polymorphism and obesity-related metabolic risk factors in Korean obese women. J. endocrinological Investig. 37, 1117–1120 (2014)

    Article  CAS  Google Scholar 

  39. H.F. Escobar-Morreale, Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 14, 270–284 (2018)

    Article  PubMed  Google Scholar 

  40. W.A. March, V.M. Moore, K.J. Willson, D.I. Phillips, R.J. Norman, M.J. Davies, The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum. Reprod. (Oxf., Engl.) 25, 544–551 (2010)

    Article  Google Scholar 

  41. Y. Zhu, X. Lin, X. Zong, S. Han, M. Wang, Y. Su, L. Ma, X. Chu, C. Yi, Q. Zhao, B. Wu, Structural basis of FPR2 in recognition of Aβ(42) and neuroprotection by humanin. Nat. Commun. 13, 1775 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Z. Wu, Y. Wen, G. Fan, H. He, S. Zhou, L. Chen, HEMGN and SLC2A1 might be potential diagnostic biomarkers of steroid-induced osteonecrosis of femoral head: study based on WGCNA and DEGs screening. BMC Musculoskelet. Disord. 22, 85 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate members of Nucleic Acid Medicine of Luzhou Key Laboratory for discussions throughout the study. We thank Bullet Edits Limited for the linguistic editing and proofreading of the manuscript.

Author contributions

J.Y., C.Z. and G.Q. conceived and designed the study. J.Y. and J.X. wrote the manuscript. G.Q. and X.L. completed data collection and management. All authors contributed and approved the manuscript.

Funding

This research was supported by Southwest Medical University Research Program (2020ZRQNA044 and 2020ZRQNB036) to J.Y. and G.Q. This work was supported by the research start-up fund of Southwest Medical University (No. 00170031) to J.Y. The investigation was also supported by the Central Nervous System Drug Key Laboratory of Sichuan Province (No# 200015-01SZ) to G.Q.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunxiang Zhang or Jingyan Yi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

Ethical approval was obtained to report on the patients involved as all databases used in this study are public databases. The animal experiments were performed under the approval of the Animal Care and Use Committee of Southwest Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, G., Xing, J., Luo, X. et al. Integrated bioinformatics analysis and screening of hub genes in polycystic ovary syndrome. Endocrine 78, 615–627 (2022). https://doi.org/10.1007/s12020-022-03181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03181-x

Keywords

Navigation