Skip to main content

Advertisement

Log in

Integrated analysis of novel macrophage related signature in anaplastic thyroid cancer

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Patients with anaplastic thyroid cancer (ATC) have a very poor prognosis. Immunotherapy is a potential treatment, while the current outcome is limited which may be due to the complicated tumor microenvironment (TME). Tumor associated macrophages (TAMs) is the most abundant cell in the TME of ATC. We aimed to clarify the novel indicators based on TAM in ATC.

Methods

Transcriptome files were downloaded from the Gene Expression Omnibus (GEO) dataset. Weighted gene co-expression network analysis, cox regression, support vector machine, and random forest were utilized to identify TAM-related prognostic genes. Consensus clustering and principal component analysis were performed for integrated analysis. Moreover, external validation (Fudan University Shanghai Cancer Center cohort) was conducted in 23 ATC samples via immunohistochemistry.

Results

ATC patients with an abundance of TAMs had a poorer prognosis. Four TAM related genes (FZD6, RBBP8, PREX1, HSD3B7) were identified and a TAM-related prognostic index (TAMRPI) was constructed with high area under the curve (AUC). Next, high TAMRPI was related to the higher level of TAM infiltration and upregulation of several pathways, such as E2F targets, IL6-JAK-STAT3, and G2M checkpoint. Immune checkpoint TIM-3 and CSF1R were positively associated with TAMRPI, and dysfunction of T cells was increased in high TAMRPI subset. Moreover, in the external validation of protein level, strong expression of TAM related genes was related to poorer prognosis, which was further supported by time-dependent AUC analysis.

Conclusion

TAM is negatively correlated to the prognosis of ATC. FZD6, RBBP8, PREX1, and HSD3B7 are potential biomarkers of ATC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Nagaiah, A. Hossain, C.J. Mooney, J. Parmentier, S.C. Remick, Anaplastic thyroid cancer: A review of epidemiology, pathogenesis, and treatment. J. Oncol. 2011, 542358 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  2. R.I. Haddad, W.M. Lydiatt, D.W. Ball, N.L. Busaidy, D. Byrd, G. Callender, P. Dickson, Q.Y. Duh, H. Ehya, M. Haymart, C. Hoh, J.P. Hunt, A. Iagaru, F. Kandeel, P. Kopp, D.M. Lamonica, J.C. McCaffrey, J.F. Moley, L. Parks, C.D. Raeburn, J.A. Ridge, M.D. Ringel, R.P. Scheri, J.P. Shah, R.C. Smallridge, C. Sturgeon, T.N. Wang, L.J. Wirth, K.G. Hoffmann, M. Hughes, Anaplastic Thyroid Carcinoma, Version 2.2015. J. Natl Compr. Canc Netw. 13, 1140–1150 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. P. D.M., The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012)

    Article  Google Scholar 

  4. C.G. Drake, E.J. Lipson, J.R. Brahmer, Breathing new life into immunotherapy: Review of melanoma, lung and kidney cancer. Nat. Rev. Clin. Oncol. 11, 24–37 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. M. Nishino, N.H. Ramaiya, H. Hatabu, F.S. Hodi, Monitoring immune-checkpoint blockade: Response evaluation and biomarker development. Nat. Rev. Clin. Oncol. 14, 655–668 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Ryder, R.A. Ghossein, J.C.M. Ricarte-Filho, J.A. Knauf, J.A. Fagin, Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr.-Relat. Cancer 15, 1069–1074 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. Mantovani, A. Sica, Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. S. Gordon, Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. A.M. Newman, C.L. Liu, M.R. Green, A.J. Gentles, W. Feng, Y. Xu, C.D. Hoang, M. Diehn, A.A. Alizadeh, Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Aran, Z. Hu, A.J. Butte, xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  11. L. Zhang, Z. Ren, Z. Su, Y. Liu, T. Yang, M. Cao, Y. Jiang, Y. Tang, H. Chen, W. Zhang, R. Gong, T. Wei, Y. Peng, B. Liu, W. Zhang, L. Yang, Y. Hu, Z. Li, J. Zhu, H. Xu, Y. Shu, H. Luo, Novel recurrent altered genes in Chinese patients with anaplastic thyroid cancer. J. Clin. Endocrinol. Metabol. 106, 988–998 (2021)

    Article  Google Scholar 

  12. I. Abe, A.K. Lam, Anaplastic thyroid carcinoma: Updates on WHO classification, clinicopathological features and staging. Histol Histopathol. 36, 239–248 (2020)

    PubMed  Google Scholar 

  13. A.M. Mirabile, L. Biafora, G. Giordano, G. Arrigoni, M.G. Cangi, I. Dell'Oca, D. Lira Luce, D. Di Santo, A. Galli, M. Tulli, R. Mellone, D. Valsecchi, V. Gregorc, M. Bussi, Uncommon Site of Metastasis and Prolonged Survival in Patients with Anaplastic Thyroid Carcinoma: A Systematic Review of the Literature. Cancers (Basel) 12, 2585 (2020)

    Article  CAS  Google Scholar 

  14. D. Hanahan, A. Robert, Weinberg, hallmarks of cancer: The next generation. Cell 144, 646–674 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. D. Chen, X. Zhang, Z. Li, B. Zhu, Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics 11, 1016–1030 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. P.J. Murray, Macrophage polarization. Annu Rev. Physiol. 79, 541–566 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. X.-T. Fu, Z. Dai, K. Song, Z.-J. Zhang, Z.-J. Zhou, S.-L. Zhou, Y.-M. Zhao, Y.-S. Xiao, Q.-M. Sun, Z.-B. Ding, J. Fan, Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int J. Oncol. 46, 587–596 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. M.L. Pinto, E. Rios, C. Durães, R. Ribeiro, J.C. Machado, A. Mantovani, M.A. Barbosa, F. Carneiro, M.J. Oliveira, The Two Faces of Tumor-Associated Macrophages and Their Clinical Significance in Colorectal Cancer. Front Immunol. 10, 1875 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C.M. Schürch, M.A. Roelli, S. Forster, M.-H. Wasmer, F. Brühl, R.S. Maire, S. Di Pancrazio, M.-D. Ruepp, R. Giger, A. Perren, A.M. Schmitt, P. Krebs, R.-P. Charles, M.S. Dettmer, Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy. Thyroid 29, 979–992 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  20. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, A. Sica, Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. H. Ye, Q. Zhou, S. Zheng, G. Li, Q. Lin, L. Wei, Z. Fu, B. Zhang, Y. Liu, Z. Li, R. Chen, Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death Dis. 9, 453 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  22. M. Shen, Y. Chen, L. Xu, R. Zhu, X. Xue, Y. Tsai, P.C. Keng, S.O. Lee, Y. Chen, Increased infiltration of macrophages to radioresistant lung cancer cells contributes to the development of the additional resistance of tumor cells to the cytotoxic effects of NK cells. Int J. Oncol. 53, 317–328 (2018)

    CAS  PubMed  Google Scholar 

  23. Y. Chen, Y. Song, W. Du, L. Gong, H. Chang, Z. Zou, Tumor-associated macrophages: An accomplice in solid tumor progression. J. Biomed. Sci. 26, 78 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  24. D.I. Kim, E. Kim, Y.A. Kim, S.W. Cho, J.A. Lim, Y.J. Park, Macrophage densities correlated with CXC chemokine receptor 4 expression and related with poor survival in anaplastic thyroid cancer. Endocrinol. Metab. (Seoul.) 31, 469–475 (2016)

    Article  CAS  Google Scholar 

  25. J. Espinal-Enríquez, S. Muñoz-Montero, I. Imaz-Rosshandler, A. Huerta-Verde, C. Mejía, E. Hernández-Lemus, Genome-wide expression analysis suggests a crucial role of dysregulation of matrix metalloproteinases pathway in undifferentiated thyroid carcinoma. BMC Genomics 16, 207 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  26. S. Ahn, T.H. Kim, S.W. Kim, C.S. Ki, H.W. Jang, J.S. Kim, J.H. Kim, J.H. Choe, J.H. Shin, S.Y. Hahn, Y.L. Oh, J.H. C., Comprehensive screening for PD-L1 expression in thyroid cancer. Endocr. Relat. Cancer 24, 97–106 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. M. Camus, M. Tosolini, B. Mlecnik, F. Pages, A. Kirilovsky, A. Berger, A. Costes, G. Bindea, P. Charoentong, P. Bruneval, Z. Trajanoski, W.H. Fridman, J. Galon, Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 69, 2685–2693 (2009)

    Article  CAS  PubMed  Google Scholar 

  28. R. Giannini, S. Moretti, C. Ugolini, E. Macerola, E. Menicali, N. Nucci, S. Morelli, R. Colella, M. Mandarano, A. Sidoni, M. Panfili, F. Basolo, E. Puxeddu, Immune profiling of thyroid carcinomas suggests the existence of two major phenotypes: An ATC-Like and a PDTC-Like. J. Clin. Endocrinol. Metab. 104, 3557–3575 (2019)

    PubMed  Google Scholar 

  29. B. Caillou, M. Talbot, U. Weyemi, C. Pioche-Durieu, A. Al Ghuzlan, J.M. Bidart, S. Chouaib, M. Schlumberger, C. Dupuy, Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma. PLoS One 6, e22567 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. P.A. Oldenborg, A. Zheleznyak, Y.F. Fang, C.F. Lagenaur, H.D. Gresham, F.P. Lindberg, Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. C.M. Schürch, S. Forster, F. Brühl, S.H. Yang, E. Felley-Bosco, E. Hewer, The “don’t eat me” signal CD47 is a novel diagnostic biomarker and potential therapeutic target for diffuse malignant mesothelioma. Oncoimmunology 7, e1373235 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the colleagues for their useful comments for the improvement and modification of the study.

Author contributions

Conceptualization: Y.L.; methodology: Y.L. and Y.Y.; analysis of data: Y.L., W.X., and B.M.; writing: Y.L.; supervision, project administration: T.L. and Y.W.

Funding

This work was supported by the National Natural Science Foundation of China (82072951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval

The research ethics committee of FUSCC has confirmed that no ethical approval is required (050432-4-1911D).

Informed consent

Informed consent was obtained from all individual participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Yang, YC., Ma, B. et al. Integrated analysis of novel macrophage related signature in anaplastic thyroid cancer. Endocrine 78, 517–530 (2022). https://doi.org/10.1007/s12020-022-03179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03179-5

Keywords

Navigation