Skip to main content

Advertisement

Log in

Dietary inflammatory index and osteoporosis: the National Health and Nutrition Examination Survey, 2017–2018

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The dietary inflammatory index (DII) is a scoring system to quantify the inflammatory effects of nutrients and foods. Inflammation may affect bone health. The purpose of this study was to explore the relationships of DII with bone mineral density (BMD) and osteoporosis.

Methods

This study involved 1023 women and 1080 men (age ≥ 50) in the US National Health and Nutrition Survey (NHANES), 2017–2018. Multivariable linear regression models were used to estimate the associations between DII and BMD. Association between DII and osteoporosis was tested with multivariable logistic regression models.

Results

In women, DII was negatively associated with total hip and femoral neck BMD after adjusting for covariates (P < 0.05). In men, DII was negatively associated with lumbar spine BMD (P < 0.05). DII was positively associated with osteoporosis in women (P < 0.05). The odds ratios (ORs) (95% CI) for osteoporosis associated with DII quartiles 2, 3 and 4 vs. quartile 1 were 2.95 (1.08, 8.09), 5.63 (2.87, 11.04), and 6.14(2.55, 14.78), respectively. No significant association was observed in men.

Conclusions

Higher DII scores were associated with increase osteoporosis risk in women, while no association was found in men. Greater pro-inflammatory diets might be associated with lower BMD in both women and men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.A. Kanis, C. Cooper, R. Rizzoli, J.-Y. Register, European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 30, 3–44 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. S. Xue, O. Kemal, M. Lu, L.M. Lix, W.D. Leslie, S. Yang, Age at attainment of peak bone mineral density and its associated factors: The National Health and Nutrition Examination Survey 2005–2014. Bone 131, 115163 (2020)

    Article  PubMed  Google Scholar 

  3. N.E. Lane, Epidemiology, etiology, and diagnosis of osteoporosis. Am. J. Obstet. Gynecol. 194(Suppl 2), S3–11 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. S.W. Wade, C. Strader, L.A. Fitzpatrick, M.S. Anthony, C.D. O’Malleya, Estimating prevalence of osteoporosis: examples from industrialized countries. Arch. Osteoporos. 9, 182 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. H.S. Kim, C. Sohn, M. Kwon, W. Na, N. Shivappa, J.R. Hébert et al. Positive association between dietary inflammatory index and the risk of osteoporosis: Results from the KoGES_health examinee (HEXA) cohort study. Nutrients 10, 1999 (2018)

    Article  PubMed Central  Google Scholar 

  6. W. Na, S. Park, N. Shivappa, J.R. Hébert, M.K. Kim, C. Sohn, Association between inflammatory potential of diet and bonemineral density in Korean postmenopausal women: Data from fourth and fifth Korea national health and nutrition examination surveys. Nutrients 11, 885 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  7. J. Thulkar, S. Singh, S. Sharma, T. Thulkar, Preventable risk factors for osteoporosis in postmenopausal women: systematic review and meta-analysis. J. Mid-Life Health 7, 108–113 (2016).

    Article  Google Scholar 

  8. R. Rizzoli, E. Biver, T.C. Brennan-Speranza, Nutritional intake and bone health. Lancet Diabetes Endocrinol. 9, 606–621 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. P.C. Calder, R. Albers, J.M. Antoine, S. Blum, R. Bourdet-Sicard, G.A. Ferns et al. Inflammatory disease processes and interactions with nutrition. Br. J. Nutr. 101(Suppl 1), S1–45 (2009)

    PubMed  Google Scholar 

  10. G. Schett, Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur. J. Clin. Investig. 41, 1361–1366 (2011)

    Article  CAS  Google Scholar 

  11. Z. Deng, W. Hu, H. Ai, Y. Chen, S. Dong, The dramatic role of IFN family in aberrant inflammatory osteolysis. Curr. Gene Ther. 21, 112–129 (2020)

    Article  Google Scholar 

  12. N. Shivappa, S.E. Steck, T.G. Hurley, J.R. Hussey, J.R. Hébert, Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 17, 1689–1696 (2014).

    Article  PubMed  Google Scholar 

  13. Y. Fang, J. Zhu, J. Fan, L. Sun, S. Cai, C. Fan et al. Dietary Inflammatory Index in relation to bone mineral density, osteoporosis risk and fracture risk: a systematic review and meta-analysis. Osteoporos. Int. 32, 633–643 (2021)

    Article  CAS  PubMed  Google Scholar 

  14. M. Mazidi, N. Shivappa, M.D. Wirth, J.R. Hebert, D.P. Mikhailidis, A.P. Kengne et al. Dietary inflammatory index and cardiometabolic risk in US adults. Atherosclerosis 276, 23–27 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. N. Shivappa, J.R. Hébert, E.R. Rietzschel, M.L. de Buyzere, M. Langlois, E. Debruyne et al. Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br. J. Nutr. 113, 665–671 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. N. Shivappa, S.E. Steck, T.G. Hurley, J.R. Hussey, Y. Ma, I.S. Ockene et al. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 17, 1825–1833 (2014)

    Article  PubMed  Google Scholar 

  17. M. Mazidi, N. Shivappa, M.D. Wirth, J.R. Hebert, H. Vatanparast, A.P. Kengne, The association between dietary inflammatory properties and bone mineral density and risk of fracture in US adults. Eur. J. Clin. Nutr. 71, 1273–1277 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. M.M.C. Cervo, D. Scott, M.J. Seibel, R.G. Cumming, V. Naganathan, F.M. Blyth et al. Proinflammatory diet increases circulating inflammatory biomarkers and falls risk in community-dwelling older men. J. Nutr. 150, 373–381 (2020)

    PubMed  Google Scholar 

  19. M.D. Wirth, N. Shivappa, J.B. Burch, T.G. Hurley, J.R. Hébert, The dietary inflammatory index, shift work, and depression: results from NHANES. Health Psychol. 36, 760–769 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  20. H.P. Dimai, Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases. Bone 104, 39–43 (2017)

    Article  PubMed  Google Scholar 

  21. A.C. Looker, H.W. Wahner, W.L. Dunn, M.S. Calvo, T.B. Harris, S.P. Heyse et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos. Int. 8, 468–489 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. T. Orchard, V. Yildiz, S.E. Steck, J.R. Hébert, Y. Ma, J.A. Cauley et al. Dietary inflammatory index, bone mineral density, and risk of fracture in postmenopausal women: results from the women’s health initiative. J. Bone Miner. Res. 32, 1136–1146 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. R. Li, W. Zhan, X. Huang, J. Wang, S.S. Lv, L. Liang et al. Associations between Dietary Inflammatory Index (DII) and bone health among postmenopausal women in the United States. Int. J. Gynecol. 158, 663–670 (2021)

    Article  Google Scholar 

  24. N. Veronese, B. Stubbs, A. Koyanagi, J.R. Hébert, C. Cooper, M.G. Caruso et al. Pro-inflammatory dietary pattern is associated with fractures in women: an eight-year longitudinal cohort study. Osteoporos. Int. 29, 143–151 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. Y. Fan, S. Ni, H. Zhang, Association between Healthy Eating Index-2015 total and component food scores with osteoporosis in middle-aged and older Americans: a cross-sectional study with U.S. National Health and Nutrition Examination Survey. Osteoporos. Int. 33, 921–929 (2022)

    Article  PubMed  Google Scholar 

  26. F. Loi, L.A. Córdova, J. Pajarinen, T.H. Lin, Z. Yao, S.B. Goodman, Inflammation, fracture and bone repair. Bone 86, 119–130 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H. Takayanagi, Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292–304 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. D. Wagner, A. Fahrleitner-Pammer, Levels of osteoprotegerin (OPG) and receptor activator for nuclear factor kappa B ligand (RANKL) in serum: are they of any help? Wiener Med. Wochenschrift 160, 452–457 (2010)

    Google Scholar 

  29. A. Esmaillzadeh, M. Kimiagar, Y. Mehrabi, L. Azadbakht, F.B. Hu, W.C. Willett, Dietary patterns and markers of systemic inflammation among Iranian women. J. Nutr. 137, 992–998 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. Z.Q. Zhang, W.T. Cao, N. Shivappa, J.R. Hebert, B.L. Li, J. He et al. Association between diet inflammatory index and osteoporotic hip fracture in elderly Chinese population. J. Am. Med. Dir. Assoc. 18, 671–677 (2017)

    Article  PubMed  Google Scholar 

  31. S. Cai, H. Yu, Y. Li, X. He, L. Yan, X. Huang et al. Bone mineral density measurement combined with vertebral fracture assessment increases diagnosis of osteoporosis in postmenopausal women. Skelet. Radiol. 49, 273–280 (2020).

    Article  Google Scholar 

  32. G.R. Mundy, Osteoporosis and Inflammation. Nutr. Rev. 65(12 Pt 2), S147–51 (2007)

    Article  PubMed  Google Scholar 

  33. E.R. Gertz, N.E. Silverman, K.S. Wise, K.B. Hanson, D.L. Alekel, J.W. Stewart et al. Contribution of serum inflammatory markers to changes in bone mineral content and density in postmenopausal women: a 1-year investigation. J. Clin. Densitomet. 13, 277–278 (2010)

    Article  CAS  Google Scholar 

  34. G.J.A. Casimir, J. Duchateau, Gender differences in inflammatory processes could explain poorer prognosis for males. J. Clin. Microbiol. 49, 478–479 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  35. R.A. Iseme, M. Mcevoy, B. Kelly, L. Agnew, F.R. Walker, J. Attia, Is osteoporosis an autoimmune mediated disorder? Bone Rep. 7, 121–131 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  36. D. Fairweather, Sex differences in inflammation during atherosclerosis. Clin. Med. Insights: Cardiol. 8(Suppl 3), 49–59 (2015)

    Google Scholar 

  37. T. Douchi, S. Kosha, H. Uto, T. Oki, M. Nakae, N. Yoshimitsu et al. Precedence of bone loss over changes in body composition and body fat distribution within a few years after menopause. Maturitas 46, 133–138 (2003)

    Article  PubMed  Google Scholar 

  38. C. de Laet, J.A. Kanis, A. Odén, H. Johanson, O. Johnell, P. Delmas et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos. Int. 16, 1330–1338 (2005)

    Article  PubMed  Google Scholar 

  39. H.W. Deng, F.H. Xu, K.M. Davies, R. Heaney, R.R. Recker, Differences in bone mineral density, bone mineral content, and bone areal size in fracturing and non-fracturing women, and their interrelationships at the spine and hip. J. Bone Miner. Metab. 20, 358–366 (2002)

    Article  CAS  PubMed  Google Scholar 

  40. V.V. Shanbhogue, K. Brixen, S. Hansen, Age- and sex-related changes in bone microarchitecture and estimated strength: a three-year prospective study using HRpQCT. J. Bone Miner. Res. 31, 1541–1549 (2016)

    Article  PubMed  Google Scholar 

  41. B.A. Christiansen, D.L. Kopperdahl, D.P. Kiel, T.M. Keaveny, M.L. Bouxsein, Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J. Bone Miner. Res. 26, 974–983 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  42. M.J. Silva, T.M. Keaveny, W.C. Hayes, Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22, 140–150 (1997)

    Article  CAS  PubMed  Google Scholar 

  43. E.J. Samelson, B.A. Christiansen, S. Demissie, K.E. Broe, Q. Louie-Gao, L.A. Cupples et al. QCT measures of bone strength at the thoracic and lumbar spine: the Framingham study. J. Bone Miner. Res. 27, 654–663 (2012)

    Article  PubMed  Google Scholar 

  44. C. Brown, Osteoporosis: staying strong: an improved understanding of bone loss can help women reduce their risk of fractures as they age. Nature 550, S15–S17 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. E. Seeman, Pathogenesis of bone fragility in women and men. Lancet 359, 1841–1850 (2002)

    Article  PubMed  Google Scholar 

  46. A.G. Bruno, K.E. Broe, X. Zhang, E.J. Samelson, C.A. Meng, R. Manoharan et al. Vertebral size, bone density, and strength in men and women matched for age and areal spine BMD. J. Bone Miner. Res. 29, 562–569 (2014)

    Article  PubMed  Google Scholar 

  47. P.P. Basiotis, S.O. Welsh, F.J. Cronin, J.L. Kelsay, W. Mertz, Number of days of food intake records required to estimate individual and group nutrient intakes with defined confidence. J. Nutr. 117, 1638–1641 (1987)

    Article  CAS  PubMed  Google Scholar 

  48. M. Vajdi, M.A. Farhangi, L. Nikniaz, Diet-derived nutrient patterns and components of metabolic syndrome: a cross-sectional community-based study. BMC Endocr. Disord. 20, 69 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Y.Z. Liu, Y.J. Liu, R.R. Recker, H.W. Deng, Molecular studies of identification of genes for osteoporosis: the 2002 update. J. Endocrinol. 177, 147–196 (2003)

    Article  CAS  PubMed  Google Scholar 

  50. A.C. Hardcastle, L. Aucott, W.D. Fraser, D.M. Reid, H.M. MacDonald, Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur. J. Clin. Nutr. 65, 378–385 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. N. Shivappa, J.R. Hébert, M. Karamati, S.E. Shariati-Bafghi, B. Rashidkhani, Increased inflammatory potential of diet is associated with bone mineral density among postmenopausal women in Iran. Eur. J. Nutr. 55, 561–568 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. R. da Silva, A. Bach-Faig, B. Raidó Quintana, G. Buckland, M.D. Vaz De Almeida, L. Serra-Majem, Worldwide variation of adherence to the Mediterranean diet, in 1961–1965 and 2000–2003. Public Health Nutr. 12, 1676–1684 (2009)

    Article  PubMed  Google Scholar 

Download references

Funding

This research work was conducted with financial support from the Natural Science Foundation of Science and Technology Development of Jilin Province, China (Grant No. 20180101129JC).

Author information

Authors and Affiliations

Authors

Contributions

SZ and WG: Data curation, Conceptualization, Methodology, Software, Formal analysis, Validation, Writing - Original draft preparation, Writing - review & editing. JL, MS, JF, and LT: Writing - Review & Editing, Investigation. YH, YW, YZ, and YX, Resources, Supervision. SY and LJ: Writing - Review & Editing, Supervision, Conceptualization, Project administration. All authors agreed with the final version of the manuscript.

Corresponding authors

Correspondence to Shuman Yang or Lina Jin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Gao, W., Li, J. et al. Dietary inflammatory index and osteoporosis: the National Health and Nutrition Examination Survey, 2017–2018. Endocrine 78, 587–596 (2022). https://doi.org/10.1007/s12020-022-03178-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03178-6

Keywords

Navigation