Skip to main content

Advertisement

Log in

Temporal decline of sperm concentration: role of endocrine disruptors

Endocrine Aims and scope Submit manuscript

Abstract

Introduction

Male infertility is a widespread disease with an etiology that is not always clear. A number of studies have reported a decrease in sperm production in the last forty years. Although the reasons are still undefined, the change in environmental conditions and the higher exposure to endocrine-disrupting chemicals (EDCs), namely bisphenol A, phthalates, polychlorinated biphenyls, polybrominated diphenyl esters, dichlorodiphenyl-dichloroethylene, pesticides, and herbicides, organophosphates, and heavy metals, starting from prenatal life may represent a possible factor justifying the temporal decline in sperm count.

Aim

The aim of this study is to provide a comprehensive description of the effects of the exposure to EDCs on testicular development, spermatogenesis, the prevalence of malformations of the male genital tract (cryptorchidism, testicular dysgenesis, and hypospadias), testicular tumor, and the mechanisms of testicular EDC-mediated damage.

Narrative review

Animal studies confirm the deleterious impact of EDCs on the male reproductive apparatus. EDCs can compromise male fertility by binding to hormone receptors, dysregulating the expression of receptors, disrupting steroidogenesis and hormonal metabolism, and altering the epigenetic mechanisms. In humans, exposure to EDCs has been associated with poor semen quality, increased sperm DNA fragmentation, increased gonadotropin levels, a slightly increased risk of structural abnormalities of the genital apparatus, such as cryptorchidism and hypospadias, and development of testicular tumor. Finally, maternal exposure to EDCs seems to predispose to the risk of developing testicular tumors.

Conclusion

EDCs negatively impact the testicular function, as suggested by evidence in both experimental animals and humans. A prenatal and postnatal increase to EDC exposure compared to the past may likely represent one of the factors leading to the temporal decline in sperm counts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. World Health Organization. Report of the meeting on the prevention of infertility at the primary health care levels. (WHO, Geneva), 1983)

    Google Scholar 

  2. A. Agarwal, A. Mulgund, A. Hamada, M.R. Chyatte, A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015)

    Article  Google Scholar 

  3. D. Valenti, S. La Vignera, R.A. Condorelli, R. Rago, N. Barone, E. Vicari, A.E. Calogero, Follicle-stimulating hormone treatment in normogonadotropic infertile men. Nat. Rev. Urol. 10, 55–62 (2013)

    Article  CAS  Google Scholar 

  4. R. Cannarella, A.E. Calogero, Male infertility: from etiology to management. Minerva Endocrinol. (Torino) 47(1), 1–3 (2022)

    Google Scholar 

  5. M. Punab, O. Poolamets, P. Paju, V. Vihljajev, K. Pomm, R. Ladva, P. Korrovits, M. Laan, Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum. Reprod. 32(1), 18–31 (2017)

    CAS  Google Scholar 

  6. F. Tüttelmann, C. Ruckert, A. Röpke, Disorders of spermatogenesis: perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med Genet 30(1), 12–20 (2018)

    Google Scholar 

  7. Andrology, In: E. Nieschlag, H.M. Behre and S. Nieschlag, eds. Male reproductive health and dysfunction, in Male reproductive health and dysfunction. (Springer Verlag, Berlin, 2010).

  8. H. Levine, N. Jørgensen, A. Martino-Andrade, J. Mendiola, D. Weksler-Derri, I. Mindlis, R. Pinotti, S.H. Swan, Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum. Reprod. Update 23(6), 646–659 (2017)

    Article  Google Scholar 

  9. R. Cannarella, R.A. Condorelli, C. Gusmano, N. Barone, N. Burrello, A. Aversa, A.E. Calogero, S. La Vignera, Temporal Trend of Conventional Sperm Parameters in a Sicilian Population in the Decade 2011-2020. J. Clin. Med. 10(5 Mar), 993 (2021). https://doi.org/10.3390/jcm10050993.

    Article  Google Scholar 

  10. H. Bahri, M. Ben Khalifa, M. Ben Rhouma, Z. Abidi, E. Abbassi, K. Ben Rhouma, M. Benkhalifa, Decline in semen quality of North African men: a retrospective study of 20,958 sperm analyses of men from different North African countries tested in Tunisia over a period of 6 years (2013–2018). Ann. Hum. Biol. 48(4), 350–359 (2021)

    Article  CAS  Google Scholar 

  11. P. Sengupta, U. Nwagha, S. Dutta, E. Krajewska-Kulak, E. Izuka, Evidence for decreasing sperm count in African population from 1965 to 2015. Afr. Health Sci. 17(2), 418–427 (2017)

    Article  Google Scholar 

  12. L. Wang, L. Zhang, X.H. Song, H.B. Zhang, C.Y. Xu, Z.J. Chen, Decline of semen quality among Chinese sperm bank donors within 7 years (2008–2014). Asian J. Androl. 19(5), 521–525 (2017)

    Article  Google Scholar 

  13. C. Huang, B. Li, K. Xu, D. Liu, J. Hu, Y. Yang, H. Nie, L. Fan, W. Zhu, Decline in semen quality among 30,636 young Chinese men from 2001 to 2015. Fertil. Steril. 107(1), 83–88.e2 (2017)

    Article  Google Scholar 

  14. R.T. Zoeller, T.R. Brown, L.L. Doan, A.C. Gore, N.E. Skakkebaek, A.M. Soto et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology 153(9), 4097–4110 (2012)

    Article  CAS  Google Scholar 

  15. R.A. Condorelli, R. Cannarella, A.E. Calogero, S. La Vignera, Evaluation of testicular function in prepubertal children. Endocrine 62(2), 274–280 (2018)

    Article  CAS  Google Scholar 

  16. A. Bashamboo, C. Eozenou, S. Rojo, K. McElreavey, Anomalies in human sex determination provide unique insights into the complex genetic interactions of early gonad development. Clin. Genet. 91(2), 143–156 (2017)

    Article  CAS  Google Scholar 

  17. N.Y. Edelsztein, R.P. Grinspon, H.F. Schteingart, R.A. Rey, Anti-Müllerian hormone as a marker of steroid and gonadotropin action in the testis of children and adolescents with disorders of the gonadal axis. Int. J. Pediatr. Endocrinol. 2016, 20 (2016)

    Article  Google Scholar 

  18. R. Cannarella, R.A. Condorelli, Y. Duca, S. La Vignera, A.E. Calogero, New insights into the genetics of spermatogenic failure: a review of the literature. Hum. Genet. 138(2), 125–140 (2019)

    Article  CAS  Google Scholar 

  19. E.R. Kabir, M.S. Rahman, I. Rahman, A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharm. 40(1), 241–258 (2015)

    Article  CAS  Google Scholar 

  20. S.A. Krieg, L.K. Shahine, R.B. Lathi, Environmental exposure to endocrine-disrupting chemicals and miscarriage. Fertil. Steril. 106(4), 941–947 (2016)

    Article  CAS  Google Scholar 

  21. B. Yilmaz, H. Terekeci, S. Sandal, F. Kelestimur, Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord. 21(1), 127–147 (2020)

    Article  CAS  Google Scholar 

  22. A.M. Calafat, X. Ye, L.Y. Wong, J.A. Reidy, L.L. Needham, Environ. Health Perspect. 116(1), 39–44 (2008)

    Article  CAS  Google Scholar 

  23. A.C. Gore, V.A. Chappell, S.E. Fenton, J.A. Flaws, A. Nadal, G.S. Prins, J. Toppari, R.T. Zoeller, EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 36(6), E1–E150 (2015)

    Article  CAS  Google Scholar 

  24. E.P. Hines, A.M. Calafat, M.J. Silva, P. Mendola, S.E. Fenton, Concentrations of phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina women. Environ. Health Perspect. 117, 86–92 (2009)

    Article  CAS  Google Scholar 

  25. S. Sifakis, V.P. Androutsopoulos, A.M. Tsatsakis, D.A. Spandidos, Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ. Toxicol. Pharm. 51, 56–70 (2017)

    Article  CAS  Google Scholar 

  26. J.P. Arrebola, M.F. Fernandez, M. Porta, J. Rosell, R.M. de la Ossa, N. Olea, P. Martin-Olmedo, Multivariate models to predict human adipose tissue PCB concentrations in Southern Spain. Environ. Int. 36(7), 705–713 (2010)

    Article  CAS  Google Scholar 

  27. A. Schecter, T.R. Harris, O. Papke, K.C. Tung, A. Musumba, Polybrominated diphenyl ether (PBDE) levels in the blood of pure vegetarians (vegans). Toxicol. Environ. Chem. 88, 107–112 (2006)

    Article  CAS  Google Scholar 

  28. A. Schecter, O. Päpke, T.R. Harris, K.C. Tung, A. Musumba, J. Olson, L. Birnbaum, Environ. Health Perspect. 114(10), 1515–1520 (2006)

    Article  CAS  Google Scholar 

  29. O. Mehrpour, P. Karrari, N. Zamani, A.M. Tsatsakis, M. Abdollahi, Occupational exposure to pesticides and consequences on male semen and fertility: a review. Toxicol. Lett. 230(2), 146–156 (2014)

    Article  CAS  Google Scholar 

  30. N.H. Aneck-Hahn, G.W. Schulenburg, M.S. Bornman, P. Farias, C. de Jager, Impaired semen quality associated with environmental DDT exposure in young men living in a malaria area in the Limpopo Province, South Africa. J. Androl. 28(3), 423–434 (2007)

    Article  CAS  Google Scholar 

  31. A. Schecter, P. Cramer, K. Boggess, J. Stanley, J.R. Olson, Levels of dioxins, dibenzofurans, PCB and DDE congeners in pooled food samples collected in 1995 at supermarkets across the United States. Chemosphere 34(5–7), 1437–1447 (1997)

    Article  CAS  Google Scholar 

  32. S.V.S. Rana, Perspectives in endocrine toxicity of heavy metals—a review. Biol. Trace Elem. Res. 160(1), 1–14 (2014)

    Article  CAS  Google Scholar 

  33. A.E. Calogero, M. Fiore, F. Giacone, M. Altomare, P. Asero, C. Ledda, G. Romeo, L.M. Mongioì, C. Copat, M. Giuffrida, E. Vicari, S. Sciacca, M. Ferrante, Exposure to multiple metals/metalloids and human semen quality: a cross-sectional study. Ecotoxicol. Environ. Saf. 215(Jun), 112165 (2021). https://doi.org/10.1016/j.ecoenv.2021.112165.

    Article  CAS  Google Scholar 

  34. H.E. Virtanen, N. Jørgensen, J. Toppari, Semen quality in the 21(st) century. Nat. Rev. Urol. 14(2), 120–130 (2017)

    Article  Google Scholar 

  35. G.M. Centola, A. Blanchard, J. Demick, S. Li, M.L. Eisenberg, Decline in sperm count and motility in young adult men from 2003 to 2013: observations from a U.S. sperm bank. Andrology 4(2), 270–276 (2016)

    Article  CAS  Google Scholar 

  36. B.N. Karman, M.S. Basavarajappa, Z.R. Craig, J.A. Flaws, 2,3,7,8-Tetrachlorodibenzo-p-dioxin activates the aryl hydrocarbon receptor and alters sex steroid hormone secretion without affecting growth of mouse antral follicles in vitro. Toxicol. Appl. Pharmacol. 261(1), 88–96 (2012)

    Article  CAS  Google Scholar 

  37. A. Rajakumar, R. Singh, S. Chakrabarty, R. Murugananthkumar, C. Laldinsangi, Y. Prathibha et al. Endosulfan and flutamide impair testicular development in the juvenile Asian catfish, Clarias batrachus. Aquat. Toxicol. (Amst., Neth.) 110-111, 123–132 (2012)

    Article  CAS  Google Scholar 

  38. W.R. Kelce, C.R. Stone, S.C. Laws, L.E. Gray, J.A. Kemppainen, E.M. Wilson, Persistent DDT metabolite p,p’-DDE is a potent androgen receptor antagonist. Nature 375(6532), 581–585 (1995)

    Article  CAS  Google Scholar 

  39. D.B. Martinez-Arguelles, M. Culty, B.R. Zirkin, V. Papadopoulos, In utero exposure to di-(2-ethylhexyl) phthalate decreases mineralocorticoid receptor expression in the adult testis. Endocrinology 150(12), 5575–5585 (2009)

    Article  CAS  Google Scholar 

  40. S. Lo, I. King, A. Alléra, D. Klingmüller, Effects of various pesticides on human 5alpha-reductase activity in prostate and LNCaP cells. Toxicol. Vitro: Int. J. Publ. Assoc. BIBRA 21(3), 502–508 (2007)

    Article  CAS  Google Scholar 

  41. B.T. Akingbemi, R. Ge, G.R. Klinefelter, B.R. Zirkin, M.P. Hardy, Phthalate-induced Leydig cell hyperplasia is associated with multiple endocrine disturbances. Proc. Natl Acad. Sci. USA 101(3), 775–780 (2004)

    Article  CAS  Google Scholar 

  42. D. Gunnarsson, P. Leffler, E. Ekwurtzel, G. Martinsson, K. Liu, G. Selstam, Mono-(2-ethylhexyl) phthalate stimulates basal steroidogenesis by a cAMP-independent mechanism in mouse gonadal cells of both sexes. Reprod. (Camb., Engl.) 135(5), 693–703 (2008)

    Article  CAS  Google Scholar 

  43. T. Lovekamp-Swan, A.M. Jetten, B.J. Davis, Dual activation of PPARalpha and PPARgamma by mono-(2-ethylhexyl) phthalate in rat ovarian granulosa cells. Mol. Cell Endocrinol. 201(1-2), 133–141 (2003)

    Article  CAS  Google Scholar 

  44. R.L. Jirtle, M.K. Skinner, Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8(4), 253–262 (2007)

    Article  CAS  Google Scholar 

  45. J.J. Heindel, F.S. Vom Saal, B. Blumberg, P. Bovolin, G. Calamandrei, G. Ceresini et al. Parma consensus statement on metabolic disruptors. Environ. Health.: Glob. Access Sci. Source 14, 54 (2015)

    Article  Google Scholar 

  46. M.K. Skinner, M.D. Anway, Seminiferous cord formation and germ-cell programming: epigenetic transgenerational actions of endocrine disruptors. Ann. N. Y. Acad. Sci. 1061, 18–32 (2005)

    Article  CAS  Google Scholar 

  47. A. Ben Slima, Y. Chtourou, M. Barkallah, H. Fetoui, T. Boudawara, R. Gdoura, Endocrine disrupting potential and reproductive dysfunction in male mice exposed to deltamethrin. Hum. Exp. Toxicol. 36(3), 218–226 (2017)

    Article  Google Scholar 

  48. F.B. Abdallah, A.B. Slima, I. Dammak, L. Keskes-Ammar, Z. Mallek, Comparative effects of dimethoate and deltamethrin on reproductive system in male mice. Andrologia 42(3), 182–186 (2010)

    Article  Google Scholar 

  49. A. Ben Slima, F. Ben Abdallah, L. Keskes-Ammar, Z. Mallek, A. El Feki, R. Gdoura, Embryonic exposure to dimethoate and/or deltamethrin impairs sexual development and programs reproductive success in adult male offspring mice. Andrologia 44, 661–666 (2012)

    Article  Google Scholar 

  50. E. Dallegrave, F.D. Mantese, R.T. Oliveira, A.J. Andrade, P.R. Dalsenter, A. Langeloh, Pre- and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Arch. Toxicol. 81(9), 665–673 (2007)

    Article  CAS  Google Scholar 

  51. A.M. Cummings, Methoxychlor as a model for environmental estrogens. Crit. Rev. Toxicol. 27(4), 367–379 (1997)

    Article  CAS  Google Scholar 

  52. B.T. Akingbemi, R.S. Ge, G.R. Klinefelter, G.L. Gunsalus, M.P. Hardy, A Metabolite of Methoxychlor, 2,2-Bis(p-Hydroxyphenyl)-1,1,1-Trichloroethane, Reduces Testosterone Biosynthesis in Rat Leydig Cells Through Suppression of Steady-State Messenger Ribonucleic Acid Levels of the Cholesterol Side-Chain Cleavage Enzyme1. Biol. Reprod. 62(3), 571–578 (2000)

    Article  CAS  Google Scholar 

  53. A. Lehraiki, S. Messiaen, R. Berges, M.C. Canivenc-Lavier, J. Auger, R. Habert et al. Antagonistic effects of gestational dietary exposure to low-dose vinclozolin and genistein on rat fetal germ cell development. Reprod. Toxicol. (Elmsford, NY) 31(4), 424–430 (2011)

    Article  CAS  Google Scholar 

  54. F. Eustache, F. Mondon, M.C. Canivenc-Lavier, C. Lesaffre, Y. Fulla, R. Berges et al. Chronic dietary exposure to a low-dose mixture of genistein and vinclozolin modifies the reproductive axis, testis transcriptome, and fertility. Environ. Health Perspect. 117(8), 1272–1279 (2009)

    Article  CAS  Google Scholar 

  55. N. Fiandanese, V. Borromeo, A. Berrini, B. Fischer, K. Schaedlich, J.S. Schmidt et al. Maternal exposure to a mixture of di(2-ethylhexyl) phthalate (DEHP) and polychlorinated biphenyls (PCBs) causes reproductive dysfunction in adult male mouse offspring. Reprod. Toxicol. (Elmsford, NY) 65, 123–132 (2016)

    Article  CAS  Google Scholar 

  56. J. Prados, L. Stenz, E. Somm, C. Stouder, A. Dayer, A. Paoloni-Giacobino, Prenatal Exposure to DEHP Affects Spermatogenesis and Sperm DNA Methylation in a Strain-Dependent Manner. PLoS ONE 10(7), e0132136 (2015)

    Article  Google Scholar 

  57. N.C. Noriega, K.L. Howdeshell, J. Furr, C.R. Lambright, V.S. Wilson, L.E. Gray Jr., Pubertal administration of DEHP delays puberty, suppresses testosterone production, and inhibits reproductive tract development in male Sprague-Dawley and Long-Evans rats. Toxicol. Sci. 111(1), 163–178 (2009)

    Article  CAS  Google Scholar 

  58. A. Sharma, J. Mollier, R.W.K. Brocklesby, C. Caves, C.N. Jayasena, S. Minhas, Endocrine-disrupting chemicals and male reproductive health. Reprod. Med. Biol. 19(3), 243–253 (2020)

    Article  Google Scholar 

  59. M.S. Denison, S.R. Nagy, Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharm. Toxicol. 43, 309–334 (2003)

    Article  CAS  Google Scholar 

  60. S. Mohammadi, F. Rahmani, S.M. Hasanian, F. Beheshti, M. Akbari Oryani, A. Ebrahimzadeh et al. Effects of dioxin on testicular histopathology, sperm parameters, and CatSper2 gene and protein expression in Naval Medical Research Institute male mice. Andrologia 51(11), e13411 (2019)

    Article  Google Scholar 

  61. X. Mai, Y. Dong, L. Xiang, Z. Er, Maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin suppresses male reproductive functions in their adulthood. Hum. Exp. Toxicol. 39(7), 890–905 (2020)

    Article  CAS  Google Scholar 

  62. W.G. Foster, S. Maharaj-Briceño, D.G. Cyr, Dioxin-induced changes in epididymal sperm count and spermatogenesis. Environ. Health Perspect. 118(4), 458–464 (2010)

    Article  Google Scholar 

  63. R.W. Moore, C.L. Potter, H.M. Theobald, J.A. Robinson, R.E. Peterson, Androgenic deficiency in male rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol. 79(1), 99–111 (1985)

    Article  CAS  Google Scholar 

  64. M.S. Alam, S. Ohsako, Y. Kanai, M. Kurohmaru, Single administration of butylparaben induces spermatogenic cell apoptosis in prepubertal rats. Acta Histochemic. 116(3), 474–480 (2014)

    Article  CAS  Google Scholar 

  65. J.Y. Chung, Y.J. Kim, J.Y. Kim, S.G. Lee, J.E. Park, W.R. Kim et al. Benzo[a]pyrene reduces testosterone production in rat Leydig cells via a direct disturbance of testicular steroidogenic machinery. Environ. Health Perspect. 119(11), 1569–1574 (2011)

    Article  CAS  Google Scholar 

  66. D. Mukhopadhyay, P. Nandi, A.C. Varghese, R. Gutgutia, S. Banerjee, A.K. Bhattacharyya, The in vitro effect of benzo[a]pyrene on human sperm hyperactivation and acrosome reaction. Fertil. Steril. 94(2), 595–598 (2010)

    Article  CAS  Google Scholar 

  67. J. Si, P. Li, Q. Xin, X. Li, L. An, J. Li, Perinatal exposure to low doses of tributyltin chloride reduces sperm count and quality in mice. Environ. Toxicol. 30(1), 44–52 (2015)

    Article  CAS  Google Scholar 

  68. X. Jie, W. Yang, Y. Jie, J.H. Hashim, X.Y. Liu, Q.Y. Fan et al. Toxic effect of gestational exposure to nonylphenol on F1 male rats. Birth Defects Res. Part B, Dev. Reprod. Toxicol. 89(5), 418–428 (2010)

    Article  CAS  Google Scholar 

  69. X. Jia, C. Cai, J. Wang, N. Gao, H. Zhang, Endocrine-disrupting effects and reproductive toxicity of low dose MCLR on male frogs (Rana nigromaculata) in vivo. Aquat. Toxicol. (Amst., Neth.) 155, 24–31 (2014)

    Article  CAS  Google Scholar 

  70. F.T. Mathias, R.M. Romano, M.M. Kizys, T. Kasamatsu, G. Giannocco, M.I. Chiamolera et al. Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology 9(1), 64–70 (2015)

    Article  CAS  Google Scholar 

  71. F. Barbagallo, R.A. Condorelli, L.M. Mongioì, R. Cannarella, A. Aversa, A.E. Calogero, La, S. Vignera, Effects of Bisphenols on Testicular Steroidogenesis. Front. Endocrinol. (Lausanne) 11(Jun), 373 (2020). https://doi.org/10.3389/fendo.2020.00373.

    Article  Google Scholar 

  72. J. Vitku, J. Heracek, L. Sosvorova, R. Hampl, T. Chlupacova, M. Hill et al. Associations of bisphenol A and polychlorinated biphenyls with spermatogenesis and steroidogenesis in two biological fluids from men attending an infertility clinic. Environ. Int. 8990, 166–173 (2016)

    Article  Google Scholar 

  73. E. Den Hond, H. Tournaye, P. De Sutter, W. Ombelet, W. Baeyens, A. Covaci et al. Human exposure to endocrine disrupting chemicals and fertility: A case-control study in male subfertility patients. Environ. Int. 84, 154–160 (2015)

    Article  Google Scholar 

  74. W. Hu, T. Dong, L. Wang, Q. Guan, L. Song, D. Chen et al. Obesity aggravates toxic effect of BPA on spermatogenesis. Environ. Int. 105, 56–65 (2017)

    Article  CAS  Google Scholar 

  75. E. Adoamnei, J. Mendiola, F. Vela-Soria, M.F. Fernández, N. Olea, N. Jørgensen et al. Urinary bisphenol A concentrations are associated with reproductive parameters in young men. Environ. Res. 161, 122–128 (2018)

    Article  CAS  Google Scholar 

  76. P.P. Chen, C. Liu, M. Zhang, Y. Miao, F.P. Cui, Y.L. Deng et al. Associations between urinary bisphenol A and its analogues and semen quality: A cross-sectional study among Chinese men from an infertility clinic. Environ. Int. 161, 107132 (2022)

    Article  CAS  Google Scholar 

  77. C. Castellini, M. Muselli, A. Parisi, M. Totaro, D. Tienforti, G. Cordeschi et al. Association between urinary bisphenol A concentrations and semen quality: a meta-analytic study. Biochem. Pharm. 197, 114896 (2022)

    Article  CAS  Google Scholar 

  78. M.J. Perry, Effects of environmental and occupational pesticide exposure on human sperm: a systematic review. Hum. Reprod. Update 14(3), 233–242 (2008)

    Article  CAS  Google Scholar 

  79. S.E. Martenies, M.J. Perry, Environmental and occupational pesticide exposure and human sperm parameters: a systematic review. Toxicology 307, 66–73 (2013)

    Article  CAS  Google Scholar 

  80. C. Giulioni, V. Maurizi, S. Scarcella, M. Di Biase, V. Iacovelli, A.B. Galosi et al. Do environmental and occupational exposure to pyrethroids and organophosphates affect human semen parameters? Results of a systematic review and meta-analysis. Andrologia 53(11), e14215 (2021)

    Article  CAS  Google Scholar 

  81. C. Wang, L. Yang, S. Wang, Z. Zhang, Y. Yu, M. Wang et al. The classic EDCs, phthalate esters and organochlorines, in relation to abnormal sperm quality: a systematic review with meta-analysis. Sci. Rep. 6, 19982 (2016)

    Article  CAS  Google Scholar 

  82. R. Hauser, J.D. Meeker, N.P. Singh, M.J. Silva, L. Ryan, S. Duty et al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum. Reprod. 22(3), 688–695 (2007)

    Article  CAS  Google Scholar 

  83. S.M. Duty, N.P. Singh, M.J. Silva, D.B. Barr, J.W. Brock, L. Ryan et al. The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ. Health Perspect. 111(9), 1164–1169 (2003)

    Article  CAS  Google Scholar 

  84. S.M. Duty, M.J. Silva, D.B. Barr, J.W. Brock, L. Ryan, Z. Chen et al. Phthalate exposure and human semen parameters. Epidemiology 14(3), 269–277 (2003)

    Article  Google Scholar 

  85. R. Hauser, J.D. Meeker, S. Duty, M.J. Silva, A.M. Calafat, Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology 17(6), 682–691 (2006)

    Article  Google Scholar 

  86. B.A. Jönsson, J. Richthoff, L. Rylander, A. Giwercman, L. Hagmar, Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiology 16(4), 487–493 (2005)

    Article  Google Scholar 

  87. R. Rozati, P.P. Reddy, P. Reddanna, R. Mujtaba, Role of environmental estrogens in the deterioration of male factor fertility. Fertil. Steril. 78(6), 1187–1194 (2002)

    Article  Google Scholar 

  88. P. Mocarelli, P.M. Gerthoux, D.G. Patterson Jr, S. Milani, G. Limonta, M. Bertona, S. Signorini, P. Tramacere, L. Colombo, C. Crespi, P. Brambilla, C. Sarto, V. Carreri, E.J. Sampson, W.E. Turner, L.L. Needham, Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ. Health Perspect. 116(1), 70–77 (2008)

    Article  CAS  Google Scholar 

  89. Y. Zhang, S. Li, S. Li, Relationship between cadmium content in semen and male infertility: a meta-analysis. Environ. Sci. Pollut. Res. Int. 26(2 Jan), 1947–1953 (2019). https://doi.org/10.1007/s11356-018-3748-6.

    Article  CAS  Google Scholar 

  90. R.M. Sharpe, N.E. Skakkebaek, Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 341(8857), 1392–1395 (1993)

    Article  CAS  Google Scholar 

  91. R. Palmer Julie et al. Urogenital abnormalities in men exposed to diethylstilbestrol in utero: a cohort study. Environ. Health 8, 1–6 (2009)

    Google Scholar 

  92. L. Storgaard, P.B. Jens, O. Jørn, Male reproductive disorders in humans and prenatal indicators of estrogen exposure: a review of published epidemiological studies. Reprod. Toxicol. 21, 4–15 (2006)

    Article  CAS  Google Scholar 

  93. L.M. Biggs, A. Baer, C.W. Critchlow, Maternal, delivery, and perinatal characteristics associated with cryptorchidism: a population-based case-control study among births in Washington State. Epidemiology 13(2), 197–204 (2002)

    Article  Google Scholar 

  94. P. Carbone et al. “The possible role of endocrine disrupting chemicals in the aetiology of cryptorchidism and hypospadias: a population‐based case–control study in rural Sicily. Int. J. Androl. 30.1, 3–13 (2007)

    Article  Google Scholar 

  95. J.P. Bonde, E.M. Flachs, S. Rimborg, C.H. Glazer, A. Giwercman, C.H. Ramlau-Hansen, K.S. Hougaard, B.B. Høyer, K.K. Hærvig, S.B. Petersen, L. Rylander, I.O. Specht, G. Toft, E.V. Bräuner, The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum. Reprod. Update 23(1), 104–125 (2016)

    Article  Google Scholar 

  96. M.P. Longnecker, M.A. Klebanoff, J.W. Brock, H. Zhou, K.A. Gray, L.L. Needham, A.J. Wilcox, Maternal serum level of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene and risk of cryptorchidism, hypospadias, and polythelia among male offspring. Am. J. Epidemiol. 155(4), 313–322 (2002)

    Article  Google Scholar 

  97. R. Bhatia, R. Shiau, M. Petreas, J.M. Weintraub, L. Farhang, B. Eskenazi, Organochlorine pesticides and male genital anomalies in the child health and development studies. Environ. Health Perspect. 113(2), 220–224 (2005)

    Article  CAS  Google Scholar 

  98. K.A. McGlynn, X. Guo, B.I. Graubard, J.W. Brock, M.A. Klebanoff, M.P. Longnecker, Maternal pregnancy levels of polychlorinated biphenyls and risk of hypospadias and cryptorchidism in male offspring. Environ. Health Perspect. 117(9), 1472–1476 (2009)

    Article  CAS  Google Scholar 

  99. L. Cheng, P. Albers, D.M. Berney, D.R. Feldman, G. Daugaard, T. Gilligan, L.H.J. Looijenga, Testicular cancer. Nat. Rev. Dis. Prim. 4(1), 29 (2018)

    Article  Google Scholar 

  100. N.E. Skakkebaek, E. Rajpert-De Meyts, K.M. Main, Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum. Reprod. 16(5), 972–978 (2001)

    Article  CAS  Google Scholar 

  101. S. Schmiedel, J. Schüz, N.E. Skakkebaek, C. Johansen, Testicular germ cell cancer incidence in an immigration perspective, Denmark, 1978 to 2003. J. Urol. 183(4), 1378–1382 (2010)

    Article  Google Scholar 

  102. C. Myrup, T. Westergaard, T. Schnack, A. Oudin, C. Ritz, J. Wohlfahrt, M. Melbye, Testicular cancer risk in first- and second-generation immigrants to Denmark. J. Natl Cancer Inst. 100(1), 41–47 (2008)

    Article  Google Scholar 

  103. J.A. McLachlan, R.L. Dixon, Toxicologic comparisons of experimental and clinical exposure to diethylstilbestrol during gestation. Adv. Sex. Horm. Res. 3, 309–336 (1977)

    CAS  Google Scholar 

  104. L. Hardell, B. van Bavel, G. Lindström, M. Carlberg, A.C. Dreifaldt, H. Wijkström, H. Starkhammar, M. Eriksson, A. Hallquist, T. Kolmert, Increased concentrations of polychlorinated biphenyls, hexachlorobenzene, and chlordanes in mothers of men with testicular cancer. Environ. Health Perspect. 111(7), 930–934 (2003)

    Article  CAS  Google Scholar 

  105. B.A. Cohn, P.M. Cirillo, R.E. Christianson, Prenatal DDT exposure and testicular cancer: a nested case-control study. Arch. Environ. Occup. Health 65(3), 127–134 (2010)

    Article  CAS  Google Scholar 

  106. E.V. Bräuner, Y.H. Lim, T. Koch, C.S. Uldbjerg, L.S. Gregersen, M.K. Pedersen, H. Frederiksen, J.H. Petersen, B.A. Coull, A.M. Andersson, M. Hickey, N.E. Skakkebæk, R. Hauser, A. Juul, Endocrine Disrupting Chemicals and Risk of Testicular Cancer: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 106(12), e4834–e4860 (2021)

    Google Scholar 

  107. F. Giannandrea, L. Gandini, D. Paoli, R. Turci, I. Figà-Talamanca, Pesticide exposure and serum organochlorine residuals among testicular cancer patients and healthy controls. J. Environ. Sci. Health B 46(8), 780–787 (2011)

    CAS  Google Scholar 

  108. K.A. McGlynn, S.M. Quraishi, B.I. Graubard, J.P. Weber, M.V. Rubertone, R.L. Erickson, Persistent organochlorine pesticides and risk of testicular germ cell tumors. J. Natl Cancer Inst. 100(9), 663–671 (2008)

    Article  CAS  Google Scholar 

  109. K.A. McGlynn, S.M. Quraishi, B.I. Graubard, J.P. Weber, M.V. Rubertone, R.L. Erickson, Polychlorinated biphenyls and risk of testicular germ cell tumors. Cancer Res. 69(5), 1901–1909 (2009)

    Article  CAS  Google Scholar 

  110. M.P. Purdue, L.S. Engel, H. Langseth, L.L. Needham, A. Andersen, D.B. Barr, A. Blair, N. Rothman, K.A. McGlynn, Prediagnostic serum concentrations of organochlorine compounds and risk of testicular germ cell tumors. Environ. Health Perspect. 117(10), 1514–1519 (2009)

    Article  CAS  Google Scholar 

  111. H. Tainaka, H. Takahashi, M. Umezawa, H. Tanaka, Y. Nishimune, S. Oshio et al. Evaluation of the testicular toxicity of prenatal exposure to bisphenol A based on microarray analysis combined with MeSH annotation. J. Toxicol. Sci. 37(3), 539–548 (2012)

    Article  CAS  Google Scholar 

  112. A.C. Kalb, A.L. Kalb, T.F. Cardoso, C.G. Fernandes, C.D. Corcini, A.S. Varela Junior et al. Maternal Transfer of Bisphenol A During Nursing Causes Sperm Impairment in Male Offspring. Arch. Environ. Contamination Toxicol. 70(4), 793–801 (2016)

    Article  CAS  Google Scholar 

  113. M.S. Rahman, W.S. Kwon, P.C. Karmakar, S.J. Yoon, B.Y. Ryu, M.G. Pang, Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice. Environ. Health Perspect. 125(2), 238–245 (2017)

    Article  CAS  Google Scholar 

  114. M. Xie, P. Bu, F. Li, S. Lan, H. Wu, L. Yuan et al. Neonatal bisphenol A exposure induces meiotic arrest and apoptosis of spermatogenic cells. Oncotarget 7(9), 10606–10615 (2016)

    Article  Google Scholar 

  115. H.F. Wang, M. Liu, N. Li, T. Luo, L.P. Zheng, X.H. Zeng, Bisphenol A Impairs Mature Sperm Functions by a CatSper-Relevant Mechanism. Toxicol. Sci.: Off. J. Soc. Toxicol. 152(1), 145–154 (2016)

    Article  CAS  Google Scholar 

  116. F. Rezaee-Tazangi, L. Zeidooni, Z. Rafiee, F. Fakhredini, H. Kalantari, H. Alidadi et al. Taurine effects on Bisphenol A-induced oxidative stress in the mouse testicular mitochondria and sperm motility. JBRA Assist. Reprod. 24(4), 428–435 (2020)

    Google Scholar 

  117. Z. Rafiee, F. Rezaee-Tazangi, L. Zeidooni, H. Alidadi, L. Khorsandi, Protective effects of selenium on Bisphenol A-induced oxidative stress in mouse testicular mitochondria and sperm motility. JBRA Assist. Reprod. 25(3), 459–465 (2021)

    Google Scholar 

  118. C. Liu, W. Duan, R. Li, S. Xu, L. Zhang, C. Chen et al. Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity. Cell Death Dis. 4(6), e676 (2013)

    Article  CAS  Google Scholar 

  119. D. Tiwari, G. Vanage, Mutagenic effect of Bisphenol A on adult rat male germ cells and their fertility. Reprod. Toxicol. (Elmsford, NY) 40, 60–68 (2013)

    Article  CAS  Google Scholar 

  120. M. Hulak, I. Gazo, A. Shaliutina, P. Linhartova, In vitro effects of bisphenol A on the quality parameters, oxidative stress, DNA integrity and adenosine triphosphate content in sterlet (Acipenser ruthenus) spermatozoa. Comp. Biochem. Physiol. Toxicol. Pharmacol.: CBP 158(2), 64–71 (2013)

    Article  CAS  Google Scholar 

  121. R.P. Singh, C.M. Shafeeque, S.K. Sharma, N.K. Pandey, R. Singh, J. Mohan et al. Bisphenol A reduces fertilizing ability and motility by compromising mitochondrial function of sperm. Environ. Toxicol. Chem. 34(7), 1617–1622 (2015)

    Article  CAS  Google Scholar 

  122. Y. Zhang, M. Cheng, L. Wu, G. Zhang, Z. Wang, Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus. Aquat. Toxicol. (Amst., Neth.) 179, 18–26 (2016)

    Article  CAS  Google Scholar 

  123. L. Zhu, C. Yuan, M. Wang, Y. Liu, Z. Wang, M.M. Seif, Bisphenol A-associated alterations in DNA and histone methylation affects semen quality in rare minnow Gobiocypris rarus. Aquat. Toxicol. (Amst., Neth.) 226, 105580 (2020)

    Article  CAS  Google Scholar 

  124. L. Zhu, L. Wang, X. Fan, C. Dong, G. Wang, Z. Wang, Chronic exposure to Bisphenol A resulted in alterations of reproductive functions via immune defense, oxidative damage and disruption DNA/histone methylation in male rare minnow Gobiocypris rarus. Aquat. Toxicol. (Amst., Neth.) 236, 105849 (2021)

    Article  CAS  Google Scholar 

  125. Y.H. Chiu, A.J. Gaskins, P.L. Williams, J. Mendiola, N. Jørgensen, H. Levine et al. Intake of Fruits and Vegetables with Low-to-Moderate Pesticide Residues Is Positively Associated with Semen-Quality Parameters among Young Healthy Men. J. Nutr. 146(5), 1084–1092 (2016)

    Article  CAS  Google Scholar 

  126. S. Daoud, A. Sellami, M. Bouassida, S. Kebaili, L. Ammar Keskes, T. Rebai et al. Routine assessment of occupational exposure and its relation to semen quality in infertile men: a cross-sectional study. Turk. J. Med. Sci. 47(3), 902–907 (2017)

    Article  CAS  Google Scholar 

  127. C. Cremonese, C. Piccoli, F. Pasqualotto, R. Clapauch, R.J. Koifman, S. Koifman et al. Occupational exposure to pesticides, reproductive hormone levels and sperm quality in young Brazilian men. Reprod. Toxicol. (Elmsford, NY) 67, 174–185 (2017)

    Article  CAS  Google Scholar 

  128. L. Miranda-Contreras, R. Gómez-Pérez, G. Rojas, I. Cruz, L. Berrueta, S. Salmen et al. Occupational exposure to organophosphate and carbamate pesticides affects sperm chromatin integrity and reproductive hormone levels among Venezuelan farm workers. J. Occup. Health 55(3), 195–203 (2013)

    Article  CAS  Google Scholar 

  129. L. Miranda-Contreras, I. Cruz, J.A. Osuna, R. Gómez-Pérez, L. Berrueta, S. Salmen et al. [Effects of occupational exposure to pesticides on semen quality of workers in an agricultural community of Merida state, Venezuela]. Invest. Clin. 56(2), 123–136 (2015)

    Google Scholar 

  130. R. Recio-Vega, G. Ocampo-Gómez, V.H. Borja-Aburto, J. Moran-Martínez, M.E. Cebrian-Garcia, Organophosphorus pesticide exposure decreases sperm quality: association between sperm parameters and urinary pesticide levels. J. Appl. Toxicol. 28(5), 674–680 (2008)

    Article  CAS  Google Scholar 

  131. L.C. Sánchez-Peña, B.E. Reyes, L. López-Carrillo, R. Recio, J. Morán-Martínez, M.E. Cebrián et al. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol. Appl. Pharmacol. 196(1), 108–113 (2004)

    Article  Google Scholar 

  132. N. Pérez-Herrera, H. Polanco-Minaya, E. Salazar-Arredondo, M.J. Solís-Heredia, I. Hernández-Ochoa, E. Rojas-García et al. PON1Q192R genetic polymorphism modifies organophosphorous pesticide effects on semen quality and DNA integrity in agricultural workers from southern Mexico. Toxicol. Appl. Pharmacol. 230(2), 261–268 (2008)

    Article  Google Scholar 

  133. A. Ghafouri-Khosrowshahi, A. Ranjbar, L. Mousavi, H. Nili-Ahmadabadi, F. Ghaffari, H. Zeinvand-Lorestani et al. Chronic exposure to organophosphate pesticides as an important challenge in promoting reproductive health: a comparative study. J. Educ. Health Promot. 8, 149 (2019)

    Google Scholar 

  134. L. Multigner, P. Kadhel, M. Pascal, F. Huc-Terki, H. Kercret, C. Massart et al. Parallel assessment of male reproductive function in workers and wild rats exposed to pesticides in banana plantations in Guadeloupe. Environ. Health:Glob. Access Sci. Source 7, 40 (2008)

    Article  Google Scholar 

  135. C. Padungtod, D.A. Savitz, J.W. Overstreet, D.C. Christiani, L.M. Ryan, X. Xu, Occupational pesticide exposure and semen quality among Chinese workers. J. Occup. Environ. Med. 42(10), 982–992 (2000)

    Article  CAS  Google Scholar 

  136. S. Yucra, J. Rubio, M. Gasco, C. Gonzales, K. Steenland, G.F. Gonzales, Semen quality and reproductive sex hormone levels in Peruvian pesticide sprayers. Int J. Occup. Environ. Health 12(4), 355–361 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Prof. Ponco Birowo for his critical review of the paper and helpful feedback, Dr. Damayanthi Durairajanayagam for her help with the scientific editing, and the artist Bernastine Buchanan from the Cleveland Clinic’s Center, Medical Art & Photography, for creating the illustration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannarella, R., Gül, M., Rambhatla, A. et al. Temporal decline of sperm concentration: role of endocrine disruptors. Endocrine 79, 1–16 (2023). https://doi.org/10.1007/s12020-022-03136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03136-2

Keywords

Navigation