Skip to main content
Log in

Expression and methylation status of MMR and MGMT in well-differentiated pancreatic neuroendocrine tumors and potential clinical applications

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Recent studies claim that immune checkpoint inhibitors are effective in defective mismatch repair (dMMR) cancers. This raises the question of whether similar therapies are effective in PanNETs (pancreatic neuroendocrine tumors); however, in general, assessment of MMR status in PanNETs has been inconsistent in previous studies. MGMT (O6-methylguanine-DNA methyltransferase) is potentially important for guiding temozolomide (TMZ) therapy in glioblastoma. The number of reports on MGMT expression and promoter methylation in PanNETs are limited.

Methods

In this study we assessed the expression of MGMT and MMR proteins MSH2, MSH6, MLH1 and PMS2 in a series of PanNETs by IHC. The methylation status of MGMT and MMR genes in a subset of PanNETs was further assessed by MS-MLPA analysis. Survival curves were constructed using the Kaplan-Meier method, and differences were assessed using the log-rank test. Multivariate Cox proportional hazards regression models were used to determine the prognostic value of the variables.

Results

According to evaluation criteria for mismatch repair defects, none of PanNETs shown nuclear staining loss for MSH2, MSH6, MLH1, and PMS2. MGMT low-intensity PanNETs were more commonly found in higher grade, higher Ki67 index and non-functional tumors (P < 0.05). In multivariate analysis, stage III–IV and low-intensity MGMT were shown to be independent risk factors for progression of PanNETs in the entire cohort, non-functioning subgroup and G2 subgroup (P < 0.05 for all). MGMT promoter methylation tended to be higher in the group with low expression of MGMT, However, methylation of MGMT did not statistically correlate with low expression of MGMT (P = 0.153).

Conclusions

In conclusion, our study suggests that decreased expression of MGMT but not MMR is associated with a higher risk of progression of pancreatic neuroendocrine tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Dasari, C. Shen, D. Halperin, B. Zhao, S. Zhou, Y. Xu, T. Shih, J.C. Yao, Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3(10), 1335–1342 (2017). https://doi.org/10.1001/jamaoncol.2017.0589

    Article  PubMed  PubMed Central  Google Scholar 

  2. C.G. Tran, A.T. Scott, G. Li, S.K. Sherman, P.H. Ear, J.R. Howe, Metastatic pancreatic neuroendocrine tumors have decreased somatostatin expression and increased Akt signaling. Surgery 169(1), 155–161 (2021). https://doi.org/10.1016/j.surg.2020.04.034

    Article  PubMed  Google Scholar 

  3. G. Perri, L.R. Prakash, M.H.G. Katz, Pancreatic neuroendocrine tumors. Curr. Opin. Gastroenterol. 35(5), 468–477 (2019). https://doi.org/10.1097/mog.0000000000000571

    Article  CAS  PubMed  Google Scholar 

  4. G.B. Mpilla, P.A. Philip, B. El-Rayes, A.S. Azmi, Pancreatic neuroendocrine tumors: Therapeutic challenges and research limitations. World J. Gastroenterol. 26(28), 4036–4054 (2020). https://doi.org/10.3748/wjg.v26.i28.4036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. Liu, G. Keijzers, L.J. Rasmussen, DNA mismatch repair and its many roles in eukaryotic cells. Mutat. Res. Rev. Mutat. Res. 773, 174–187 (2017). https://doi.org/10.1016/j.mrrev.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  6. D.T. Le, J.N. Durham, K.N. Smith, H. Wang, B.R. Bartlett, L.K. Aulakh, S. Lu, H. Kemberling, C. Wilt, B.S. Luber, F. Wong, N.S. Azad, A.A. Rucki, D. Laheru, R. Donehower, A. Zaheer, G.A. Fisher, T.S. Crocenzi, J.J. Lee, T.F. Greten, A.G. Duffy, K.K. Ciombor, A.D. Eyring, B.H. Lam, A. Joe, S.P. Kang, M. Holdhoff, L. Danilova, L. Cope, C. Meyer, S. Zhou, R.M. Goldberg, D.K. Armstrong, K.M. Bever, A.N. Fader, J. Taube, F. Housseau, D. Spetzler, N. Xiao, D.M. Pardoll, N. Papadopoulos, K.W. Kinzler, J.R. Eshleman, B. Vogelstein, R.A. Anders, L.A. Diaz Jr., Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349), 409–413 (2017). https://doi.org/10.1126/science.aan6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M.G. House, J.G. Herman, M.Z. Guo, C.M. Hooker, R.D. Schulick, K.D. Lillemoe, J.L. Cameron, R.H. Hruban, A. Maitra, C.J. Yeo, Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann. Surg. 238(3), 423–431 (2003). https://doi.org/10.1097/01.sla.0000086659.49569.9e. discussion 431–422

    Article  PubMed  PubMed Central  Google Scholar 

  8. M. Mei, D. Deng, T.H. Liu, X.T. Sang, X. Lu, H.D. Xiang, J. Zhou, H. Wu, Y. Yang, J. Chen, C.M. Lu, Y.J. Chen, Clinical implications of microsatellite instability and MLH1 gene inactivation in sporadic insulinomas. J. Clin. Endocrinol. Metab. 94(9), 3448–3457 (2009). https://doi.org/10.1210/jc.2009-0173

    Article  CAS  PubMed  Google Scholar 

  9. T. Arnason, H.L. Sapp, D. Rayson, P.J. Barnes, M. Drewniak, B.A. Nassar, W.Y. Huang, Loss of expression of DNA mismatch repair proteins is rare in pancreatic and small intestinal neuroendocrine tumors. Arch. Pathol. Lab. Med. 135(12), 1539–1544 (2011). https://doi.org/10.5858/arpa.2010-0560-OA

    Article  PubMed  Google Scholar 

  10. C.N. Arnold, A. Sosnowski, A. Schmitt-Gräff, R. Arnold, H.E. Blum, Analysis of molecular pathways in sporadic neuroendocrine tumors of the gastro-entero-pancreatic system. Int. J. Cancer 120(10), 2157–2164 (2007). https://doi.org/10.1002/ijc.22569

    Article  CAS  PubMed  Google Scholar 

  11. A. Mansouri, L.D. Hachem, S. Mansouri, F. Nassiri, N.J. Laperriere, D. Xia, N.I. Lindeman, P.Y. Wen, A. Chakravarti, M.P. Mehta, M.E. Hegi, R. Stupp, K.D. Aldape, G. Zadeh, MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges. Neuro. Oncol. 21(2), 167–178 (2019). https://doi.org/10.1093/neuonc/noy132

    Article  CAS  PubMed  Google Scholar 

  12. M.H. Kulke, J.L. Hornick, C. Frauenhoffer, S. Hooshmand, D.P. Ryan, P.C. Enzinger, J.A. Meyerhardt, J.W. Clark, K. Stuart, C.S. Fuchs, M.S. Redston, O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin. Cancer Res. 15(1), 338–345 (2009). https://doi.org/10.1158/1078-0432.Ccr-08-1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J.A. Gilbert, L.J. Adhikari, R.V. Lloyd, T.R. Halfdanarson, M.H. Muders, M.M. Ames, Molecular markers for novel therapeutic strategies in pancreatic endocrine tumors. Pancreas 42(3), 411–421 (2013). https://doi.org/10.1097/MPA.0b013e31826cb243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A.O. Chan, S.G. Kim, A. Bedeir, J.P. Issa, S.R. Hamilton, A. Rashid, CpG island methylation in carcinoid and pancreatic endocrine tumors. Oncogene 22(6), 924–934 (2003). https://doi.org/10.1038/sj.onc.1206123

    Article  CAS  PubMed  Google Scholar 

  15. M. Esteller, J.G. Herman, Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J. Pathol. 196(1), 1–7 (2002). https://doi.org/10.1002/path.1024

    Article  CAS  PubMed  Google Scholar 

  16. A.O. Nygren, N. Ameziane, H.M. Duarte, R.N. Vijzelaar, Q. Waisfisz, C.J. Hess, J.P. Schouten, A. Errami, M.L.P.A. Methylation-specific, (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res. 33(14), e128 (2005). https://doi.org/10.1093/nar/gni127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R.V. Lloyd, R.Y. Osamura, G. Klöppel, J. Rosai: WHO Classification of Tumours of Endocrine Organs. IARC, Lyon (2017).

  18. M. Intartaglia, R. Sabetta, M. Gargiulo, G. Roncador, F.Z. Marino, R. Franco, Immunohistochemistry for Cancer Stem Cells Detection: Principles and Methods. Methods Mol. Biol. 1692, 195–211 (2018). https://doi.org/10.1007/978-1-4939-7401-6_17

    Article  CAS  PubMed  Google Scholar 

  19. K. Garg, M.M. Leitao Jr., N.D. Kauff, J. Hansen, K. Kosarin, J. Shia, R.A. Soslow, Selection of endometrial carcinomas for DNA mismatch repair protein immunohistochemistry using patient age and tumor morphology enhances detection of mismatch repair abnormalities. Am. J. Surg. Pathol. 33(6), 925–933 (2009). https://doi.org/10.1097/PAS.0b013e318197a046

    Article  PubMed  Google Scholar 

  20. M. Brell, A. Tortosa, E. Verger, J.M. Gil, N. Viñolas, S. Villá, J.J. Acebes, L. Caral, T. Pujol, I. Ferrer, T. Ribalta, F. Graus, Prognostic significance of O6-methylguanine-DNA methyltransferase determined by promoter hypermethylation and immunohistochemical expression in anaplastic gliomas. Clin. Cancer Res. 11(14), 5167–5174 (2005). https://doi.org/10.1158/1078-0432.Ccr-05-0230

    Article  CAS  PubMed  Google Scholar 

  21. J. Wen, Y. Wang, M. Yuan, Z. Huang, Q. Zou, Y. Pu, B. Zhao, Z. Cai, Role of mismatch repair in aging. Int J. Biol. Sci. 17(14), 3923–3935 (2021). https://doi.org/10.7150/ijbs.64953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. P. Bhattacharjee, T. Sanyal, S. Bhattacharjee, P. Bhattacharjee, Epigenetic alteration of mismatch repair genes in the population chronically exposed to arsenic in West Bengal, India. Environ. Res. 163, 289–296 (2018). https://doi.org/10.1016/j.envres.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  23. U. Herrlinger, T. Tzaridis, F. Mack, J.P. Steinbach, U. Schlegel, M. Sabel, P. Hau, R.D. Kortmann, D. Krex, O. Grauer, R. Goldbrunner, O. Schnell, O. Bähr, M. Uhl, C. Seidel, G. Tabatabai, T. Kowalski, F. Ringel, F. Schmidt-Graf, B. Suchorska, S. Brehmer, A. Weyerbrock, M. Renovanz, L. Bullinger, N. Galldiks, P. Vajkoczy, M. Misch, H. Vatter, M. Stuplich, N. Schäfer, S. Kebir, J. Weller, C. Schaub, W. Stummer, J.C. Tonn, M. Simon, V.C. Keil, M. Nelles, H. Urbach, M. Coenen, W. Wick, M. Weller, R. Fimmers, M. Schmid, E. Hattingen, T. Pietsch, C. Coch, M. Glas, Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet 393(10172), 678–688 (2019). https://doi.org/10.1016/s0140-6736(18)31791-4

    Article  CAS  PubMed  Google Scholar 

  24. B.H. Lok, E.E. Gardner, V.E. Schneeberger, A. Ni, P. Desmeules, N. Rekhtman, E. de Stanchina, B.A. Teicher, N. Riaz, S.N. Powell, J.T. Poirier, C.M. Rudin, PARP Inhibitor activity correlates with SLFN11 expression and demonstrates synergy with temozolomide in small cell lung cancer. Clin. Cancer Res. 23(2), 523–535 (2017). https://doi.org/10.1158/1078-0432.Ccr-16-1040

    Article  CAS  PubMed  Google Scholar 

  25. B.C. Medeiros, H.E. Kohrt, J. Gotlib, S.E. Coutre, B. Zhang, D.A. Arber, J.L. Zehnder, Tailored temozolomide therapy according to MGMT methylation status for elderly patients with acute myeloid leukemia. Am. J. Hematol. 87(1), 45–50 (2012). https://doi.org/10.1002/ajh.22191

    Article  CAS  PubMed  Google Scholar 

  26. C. Halevy, B.C. Whitelaw, How effective is temozolomide for treating pituitary tumours and when should it be used? Pituitary 20(2), 261–266 (2017). https://doi.org/10.1007/s11102-016-0745-y

    Article  CAS  PubMed  Google Scholar 

  27. R. Tuominen, R. Jewell, J.J. van den Oord, P. Wolter, U. Stierner, C. Lindholm, C. Hertzman Johansson, D. Lindén, H. Johansson, M. Frostvik Stolt, C. Walker, H. Snowden, J. Newton-Bishop, J. Hansson, S. Egyházi Brage, MGMT promoter methylation is associated with temozolomide response and prolonged progression-free survival in disseminated cutaneous melanoma. Int J. Cancer 136(12), 2844–2853 (2015). https://doi.org/10.1002/ijc.29332

    Article  CAS  PubMed  Google Scholar 

  28. F. Morano, S. Corallo, M. Niger, L. Barault, M. Milione, R. Berenato, R. Moretto, G. Randon, M. Antista, A. Belfiore, A. Raimondi, F. Nichetti, A. Martinetti, L. Battaglia, F. Perrone, G. Pruneri, A. Falcone, M. Di Bartolomeo, F. de Braud, F. Di Nicolantonio, C. Cremolini, F. Pietrantonio, Temozolomide and irinotecan (TEMIRI regimen) as salvage treatment of irinotecan-sensitive advanced colorectal cancer patients bearing MGMT methylation. Ann. Oncol. 29(8), 1800–1806 (2018). https://doi.org/10.1093/annonc/mdy197

    Article  CAS  PubMed  Google Scholar 

  29. J. Cros, O. Hentic, V. Rebours, M. Zappa, N. Gille, N. Theou-Anton, D. Vernerey, F. Maire, P. Lévy, P. Bedossa, V. Paradis, P. Hammel, P. Ruszniewski, A. Couvelard, MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors. Endocr. Relat. Cancer 23(8), 625–633 (2016). https://doi.org/10.1530/erc-16-0117

    Article  CAS  PubMed  Google Scholar 

  30. R. Della Monica, M. Cuomo, R. Visconti, A. di Mauro, M. Buonaiuto, D. Costabile, G. De Riso, T. Di Risi, E. Guadagno, R. Tafuto, S. Lamia, A. Ottaiano, P. Cappabianca, M.L. Del Basso de Caro, F. Tatangelo, J. Hench, S. Frank, S. Tafuto, L. Chiariotti, Evaluation of MGMT gene methylation in neuroendocrine neoplasms. Oncol. Res. 28(9), 837–845 (2022). https://doi.org/10.3727/096504021x16214197880808

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Yiwei Yang of Xiamen Zeesan Biotechnology Co., Ltd. for his technical assistance with the MS-MLPA analysis.

Funding

This work was supported by the CAMS Science and Technology Innovation Program Fund for Medical Sciences and Health (Grant number [2016-I2M-1-001]), the National Scientific Data Sharing Platform for Population and Health (Grant number [NCMI–YF01N–201906]), the National Natural Science Foundation of China (C.N.) (Grant numbers [81672648], [81472326], [81341070], and [81400664]), and special funds from the Molecular Pathology Center and the Central Public Welfare Institutions of CAMS (Grant numbers [2016ZX310176-4] and [2017PT31008]). The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.Y., J.C. and Z.L. contributed to the study conception and design. Material preparation, data collection and analysis were performed by S.mo., C.J., and H.S. Experimental procedure (IHC and MS-MLPA) was performed by X.B., Y.Z., J.P., and Y.Z. X.C. and X.M. reviewed the H&E slide and evaluated the IHC results. The first draft of the manuscript was written by X.B. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shuangni Yu or Jie Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Peking Union Medical College Hospital (No. [S-K523]).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The manuscript does not contain any personal data of any kind (including any personal details, images or videos), Ethics Committee has confirmed that no consent for publication is required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, X., Mo, S., Lu, Z. et al. Expression and methylation status of MMR and MGMT in well-differentiated pancreatic neuroendocrine tumors and potential clinical applications. Endocrine 77, 538–545 (2022). https://doi.org/10.1007/s12020-022-03102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03102-y

Keywords

Navigation