Skip to main content
Log in

Aldosterone and renin concentrations were abnormally elevated in a cohort of normotensive pregnant women

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

During pregnancy, the renin–angiotensin–aldosterone system (RAAS) undergoes major changes to preserve normal blood pressure (BP) and placental blood flow and to ensure a good pregnancy outcome. Abnormal aldosterone–renin metabolism is a risk factor for arterial hypertension and cardiovascular risk, but its association with pathological conditions in pregnancy remains unknown. Moreover, potential biomarkers associated with these pathological conditions should be identified.

Aim

To study a cohort of normotensive pregnant women according to their serum aldosterone and plasma renin levels and assay their small extracellular vesicles (sEVs) and a specific protein cargo (LCN2, AT1R).

Methods

A cohort of 54 normotensive pregnant women at term gestation was included. We determined the BP, serum aldosterone, and plasma renin concentrations. In a subgroup, we isolated their plasma sEVs and semiquantitated two EV proteins (AT1R and LCN2).

Results

We set a normal range of aldosterone and renin based on the interquartile range. We identified 5/54 (9%) pregnant women with elevated aldosterone and low renin levels and 5/54 (9%) other pregnant women with low aldosterone and elevated renin levels. No differences were found in sEV-LCN2 or sEV-AT1R.

Conclusion

We found that 18% of normotensive pregnant women had either high aldosterone or high renin levels, suggesting a subclinical status similar to primary aldosteronism or hyperreninemia, respectively. Both could evolve to pathological conditions by affecting the maternal vascular and renal physiology and further the BP. sEVs and their specific cargo should be further studied to clarify their role as potential biomarkers of RAAS alterations in pregnant women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E.R. Lumbers, K.G. Pringle, Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306(2), R91–101 (2014). https://doi.org/10.1152/ajpregu.00034.2013

    Article  CAS  PubMed  Google Scholar 

  2. C. Gennari-Moser, G. Escher, S. Kramer, B. Dick, N. Eisele, M. Baumann, et al. Normotensive blood pressure in pregnancy: the role of salt and aldosterone. Hypertension 63(2), 362–8 (2014). https://doi.org/10.1161/HYPERTENSIONAHA.113.02320

    Article  CAS  PubMed  Google Scholar 

  3. E. Landau, L. Amar, Primary aldosteronism and pregnancy. Ann. Endocrinol. 77(2), 148–60 (2016). https://doi.org/10.1016/j.ando.2016.04.009

    Article  Google Scholar 

  4. P. Soma-Pillay, C. Nelson-Piercy, H. Tolppanen, A. Mebazaa, Physiological changes in pregnancy. Cardiovasc J. Afr. 27(2), 89–94 (2016). https://doi.org/10.5830/CVJA-2016-021

    Article  PubMed  PubMed Central  Google Scholar 

  5. A.H. Affinati, R.J. Auchus, Endocrine causes of hypertension in pregnancy. Gland Surg. 9(1), 69–79 (2020). https://doi.org/10.21037/gs.2019.12.04

    Article  PubMed  PubMed Central  Google Scholar 

  6. M.A. Sparks, S.D. Crowley, S.B. Gurley, M. Mirotsou, T.M. Coffman, Classical renin-angiotensin system in kidney physiology. Compr. Physiol. 4(3), 1201–1228 (2014). https://doi.org/10.1002/cphy.c130040

    Article  PubMed  PubMed Central  Google Scholar 

  7. A. Nguyen Dinh Cat, A.C. Montezano, D. Burger, R.M. Touyz, Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid. Redox Signal. 19(10), 1110–20 (2013). https://doi.org/10.1089/ars.2012.4641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C. Savoia, D. Burger, N. Nishigaki, A. Montezano, R.M. Touyz, Angiotensin II and the vascular phenotype in hypertension. Expert Rev. Mol. Med. 13, e11 (2011). https://doi.org/10.1017/S1462399411001815

    Article  CAS  PubMed  Google Scholar 

  9. L. Thapa, C.M. He, H.P. Chen, Study on the expression of angiotensin II (ANG II) receptor subtype 1 (AT1R) in the placenta of pregnancy-induced hypertension. Placenta 25(7), 637–41 (2004). https://doi.org/10.1016/j.placenta.2004.01.026

    Article  CAS  PubMed  Google Scholar 

  10. P.J. Williams, H.D. Mistry, B.A. Innes, J.N. Bulmer, F. Broughton Pipkin, Expression of AT1R, AT2R and AT4R and their roles in extravillous trophoblast invasion in the human. Placenta 31(5), 448–55 (2010). https://doi.org/10.1016/j.placenta.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  11. F.M. Rogerson, Y. Yao, B.J. Smith, P.J. Fuller, Differences in the determinants of eplerenone, spironolactone and aldosterone binding to the mineralocorticoid receptor. Clin. Exp. Pharmacol. Physiol. 31(10), 704–9 (2004). https://doi.org/10.1111/j.1440-1681.2004.04079.x

    Article  CAS  PubMed  Google Scholar 

  12. J.M.C. Connell, E. Davies, The new biology of aldosterone. J. Endocrinol. 186(1), 1 (2005). https://doi.org/10.1677/joe.1.06017

    Article  CAS  PubMed  Google Scholar 

  13. S. Alvarez, C. Suazo, A. Boltansky, M. Ursu, D. Carvajal, G. Innocenti, et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation. Transplant. Proc. 45(10), 3719–23 (2013). https://doi.org/10.1016/j.transproceed.2013.08.079

    Article  CAS  PubMed  Google Scholar 

  14. P.J. Fuller, Y.Z. Yao, R. Jin, S. He, B. Martin-Fernandez, M.J. Young, et al. Molecular evolution of the switch for progesterone and spironolactone from mineralocorticoid receptor agonist to antagonist. Proc. Natl Acad. Sci. USA 116(37), 18578–83 (2019). https://doi.org/10.1073/pnas.1903172116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M.E. Baker, Y. Katsu, Progesterone: an enigmatic ligand for the mineralocorticoid receptor. Biochem. Pharmacol. 177, 113976 (2020). https://doi.org/10.1016/j.bcp.2020.113976

    Article  CAS  PubMed  Google Scholar 

  16. A. Vecchiola, C.F. Lagos, C.A. Fuentes, F. Allende, C. Campino, C. Valdivia, et al. Different effects of progesterone and estradiol on chimeric and wild type aldosterone synthase in vitro. Reprod. Biol. Endocrinol. 11, 76 (2013). https://doi.org/10.1186/1477-7827-11-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. C. Campino, P. Trejo, C.A. Carvajal, A. Vecchiola, C. Valdivia, C.A. Fuentes, et al. Pregnancy normalized familial hyperaldosteronism type I: a novel role for progesterone? J. Hum. Hypertens. 29(2), 138–9 (2015). https://doi.org/10.1038/jhh.2014.49

    Article  CAS  PubMed  Google Scholar 

  18. C. Latouche, S. El Moghrabi, S. Messaoudi, A. Nguyen Dinh Cat, I. Hernandez-Diaz, D. Alvarez de la Rosa, et al. Neutrophil gelatinase-associated lipocalin is a novel mineralocorticoid target in the cardiovascular system. Hypertension 59(5), 966–72 (2012). https://doi.org/10.1161/HYPERTENSIONAHA.111.187872

    Article  CAS  PubMed  Google Scholar 

  19. A. Tarjus, E. Martinez-Martinez, C. Amador, C. Latouche, S. El Moghrabi, T. Berger, et al. Neutrophil gelatinase-associated lipocalin, a novel mineralocorticoid biotarget, mediates vascular profibrotic effects of mineralocorticoids. Hypertension 66(1), 158–66 (2015). https://doi.org/10.1161/HYPERTENSIONAHA.115.05431

    Article  CAS  PubMed  Google Scholar 

  20. C. Thery, K.W. Witwer, Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7(1), 1535750 (2018). https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  21. C. Salomon, G.E. Rice, Chapter six–role of exosomes in placental homeostasis and pregnancy disorders. In Progress in Molecular Biology and Translational Science, vol. 145, ed. by W.R. Huckle (Academic Press; Amsterdam, The Netherlands 2017), 163–179

  22. M.D. Mitchell, H.N. Peiris, M. Kobayashi, Y.Q. Koh, G. Duncombe, S.E. Illanes, et al. Placental exosomes in normal and complicated pregnancy. Am. J. Obstet. Gynecol. 213(4, Supplement), S173–S81 (2015). https://doi.org/10.1016/j.ajog.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  23. C. Salomon, M.J. Torres, M. Kobayashi, K. Scholz-Romero, L. Sobrevia, A. Dobierzewska, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS ONE 9(6), e98667 (2014). https://doi.org/10.1371/journal.pone.0098667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. X.-B.L. Hong-Chao Zhang, S. Huang, X.-Y. Bi, H.-X. Wang, L.-X. Xie, Y.-Q. Wang, X.-F. Cao, J. Lv, F.-J. Xiao, Y. Yang, Z.-K. Guo, Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev. 21(18), 3289–97 (2012). https://doi.org/10.1089/scd.2012.0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. E.R.P.P. Carrillo, Lipocalina asociada con la gelatinasa de neutrófilos. Un biomarcador que llegó para quedarse. Med. Crít 4, 258–63 (2014)

    Google Scholar 

  26. M. Laskowska, B. Leszczyńska-Gorzelak, J. Oleszczuk, Placental angiotensin II receptor AT1R in normotensive patients and its correlation between infant birth weight. Eur. J. Obstet. Gynecol. Reprod. Biol. 109(2), 166–70 (2003). https://doi.org/10.1016/S0301-2115(03)00079-4

    Article  CAS  PubMed  Google Scholar 

  27. P.J. Williams, H.D. Mistry, B.A. Innes, J.N. Bulmer, F. Broughton Pipkin, Expression of AT1R, AT2R and AT4R and their roles in extravillous trophoblast invasion in the human. Placenta 31(5), 448–55 (2010). https://doi.org/10.1016/j.placenta.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  28. P.K. Whelton, R.M. Carey, W.S. Aronow, D.E. Casey, K.J. Collins, C.D. Himmelfarb, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71(6), e13–e115 (2018). https://doi.org/10.1161/HYP.0000000000000065

    Article  CAS  PubMed  Google Scholar 

  29. A. Markou, T. Pappa, G. Kaltsas, A. Gouli, K. Mitsakis, P. Tsounas, et al. Evidence of primary aldosteronism in a predominantly female cohort of normotensive individuals: a very high odds ratio for progression into arterial hypertension. J. Clin. Endocrinol. Metab. 98(4), 1409–16 (2013). https://doi.org/10.1210/jc.2012-3353

    Article  CAS  PubMed  Google Scholar 

  30. R. Baudrand, F.J. Guarda, C. Fardella, G. Hundemer, J. Brown, G. Williams, et al. Continuum of renin-independent aldosteronism in normotension. Hypertension 69(5), 950–6 (2017). https://doi.org/10.1161/HYPERTENSIONAHA.116.08952

    Article  CAS  PubMed  Google Scholar 

  31. C. Campino, C. Hill, R. Baudrand, A. Martinez-Aguayo, M. Aglony, C.A. Carrasco, et al. Usefulness and pitfalls in sodium intake estimation: comparison of dietary assessment and urinary excretion in chilean children and adults. Am. J. Hypertens. 29(10), 1212–7 (2016). https://doi.org/10.1093/ajh/hpw056. Epub 2016/06/10PubMed PMID: 27279009

    Article  CAS  PubMed  Google Scholar 

  32. A. Tapia-Castillo, R. Baudrand, A. Vaidya, C. Campino, F. Allende, C. Valdivia, et al. Clinical, biochemical, and genetic characteristics of "nonclassic" apparent mineralocorticoid excess syndrome. J. Clin. Endocrinol. Metab. 104(2), 595–603 (2019). https://doi.org/10.1210/jc.2018-01197

    Article  PubMed  Google Scholar 

  33. S. Sarker, K. Scholz-Romero, A. Perez, S.E. Illanes, M.D. Mitchell, G.E. Rice, et al. Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J. Transl. Med. 12, 204 (2014). https://doi.org/10.1186/1479-5876-12-204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Tapia-Castillo, D. Guanzon, C. Palma, A. Lai, E. Barros, F. Allende, et al. Downregulation of exosomal miR-192-5p and miR-204-5p in subjects with nonclassic apparent mineralocorticoid excess. J. Transl. Med. 17(1), 392 (2019). https://doi.org/10.1186/s12967-019-02143-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B. Fuenzalida, C. Cantin, S. Kallol, L. Carvajal, V. Pasten, S. Contreras-Duarte, et al. Cholesterol uptake and efflux are impaired in human trophoblast cells from pregnancies with maternal supraphysiological hypercholesterolemia. Sci. Rep. 10(1), 5264 (2020). https://doi.org/10.1038/s41598-020-61629-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J.W. Funder, R.M. Carey, F. Mantero, M.H. Murad, M. Reincke, H. Shibata, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 101, 1889–916 (2016). https://doi.org/10.1210/jc.2015-4061

    Article  CAS  PubMed  Google Scholar 

  37. P. Mulatero, M. Stowasser, K.C. Loh, C.E. Fardella, R.D. Gordon, L. Mosso, et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J. Clin. Endocrinol. Metab. 89(3), 1045–50 (2004). Epub 2004/03/06

    Article  CAS  PubMed  Google Scholar 

  38. Y. Takeda, S. Karashima, T. Yoneda, Primary aldosteronism, diagnosis and treatment in Japan. Rev. Endocr. Metab. Disord. 12(1), 21–5 (2011). https://doi.org/10.1007/s11154-011-9164-6

    Article  CAS  PubMed  Google Scholar 

  39. L. Mosso, C. Carvajal, A. Gonzalez, A. Barraza, F. Avila, J. Montero, et al. Primary aldosteronism and hypertensive disease. Hypertension 42(2), 161–5 (2003). https://doi.org/10.1161/01.HYP.0000079505.25750.11

    Article  CAS  PubMed  Google Scholar 

  40. K. Omata, S.A. Tomlins, W.E. Rainey, Aldosterone-producing cell clusters in normal and pathological states. Horm. Metab. Res 49(12), 951–6 (2017). https://doi.org/10.1055/s-0043-122394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Martinez-Aguayo, M. Aglony, C. Campino, H. Garcia, R. Bancalari, L. Bolte, et al. Aldosterone, plasma Renin activity, and aldosterone/renin ratio in a normotensive healthy pediatric population. Hypertension 56(3), 391–6 (2010). https://doi.org/10.1161/HYPERTENSIONAHA.110.155135

    Article  CAS  PubMed  Google Scholar 

  42. C.E. Fardella, L.M. Mosso, C.A. Carvajal, [Primary aldosteronism]. Rev. Med Chil. 136(7), 905–14 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. W.A. Hsueh, J.A. Luetscher, E.J. Carlson, G. Grislis, E. Fraze, A. McHargue, Changes in active and inactive renin throughout pregnancy. J. Clin. Endocrinol. Metab. 54(5), 1010–6 (1982). https://doi.org/10.1210/jcem-54-5-1010

    Article  CAS  PubMed  Google Scholar 

  44. E.R. Lumbers, S.J. Delforce, A.L. Arthurs, K.G. Pringle, Causes and consequences of the dysregulated maternal renin-angiotensin system in preeclampsia. Front Endocrinol. 10, 563 (2019). https://doi.org/10.3389/fendo.2019.00563

    Article  Google Scholar 

  45. A. Larsson, M. Palm, L.O. Hansson, O. Axelsson, Reference values for clinical chemistry tests during normal pregnancy. Bjog 115(7), 874–81 (2008). https://doi.org/10.1111/j.1471-0528.2008.01709.x

    Article  CAS  PubMed  Google Scholar 

  46. M.K. Kashyap, S.V. Saxena, M. Khullar, H. Sawhney, K. Vasishta, Role of anion gap and different electrolytes in hypertension during pregnancy (preeclampsia). Mol. Cell Biochem. 282(1-2), 157–67 (2006). https://doi.org/10.1007/s11010-006-1739-2

    Article  CAS  PubMed  Google Scholar 

  47. L. Lyu, H. Wang, B. Li, Q. Qin, L. Qi, M. Nagarkatti, et al. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. J. Mol. Cell. Cardiol. 89, 268–79 (2015). https://doi.org/10.1016/j.yjmcc.2015.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. G. Pironti, R.T. Strachan, D. Abraham, S.M.-W. Yu, M. Chen, W. Chen, et al. Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation 131(24), 2120–30 (2015). https://doi.org/10.1161/CIRCULATIONAHA.115.015687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. E. Willms, H.J. Johansson, I. Mager, Y. Lee, K.E. Blomberg, M. Sadik, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 6, 22519 (2016). https://doi.org/10.1038/srep22519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. C.A. Carvajal, A. Tapia-Castillo, A. Vecchiola, R. Baudrand, C.E. Fardella, Classic and nonclassic apparent mineralocorticoid excess syndrome. J. Clin. Endocrinol. Metab. 105(4), dgz315 (2020). https://doi.org/10.1210/clinem/dgz315

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the following grants: ANID/CONICYT-FONDECYT 1160695, 1190250, and 1212006; FONDECYT-POSTDOCTORAL 3200646; CONICYT-FONDEQUIP EQM150023; ANID–Millennium Science Initiative Program—IMII P09/016-F, ICN09_016; CORFO BMRC-13CTI-21526-P1; and SOCHED 2019-09 and CETREN-UC.

Author information

Authors and Affiliations

Authors

Contributions

V.P., A.L., C.A.C., C.E.F. and A.T.-C. designed the study, collected, analyzed, interpreted the patients data, and wrote the first draft of the manuscript. All authors contributed to the discussion, reviewed the manuscript, and approved the final version.

Corresponding authors

Correspondence to Andrea Leiva or Cristian A. Carvajal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastén, V., Tapia-Castillo, A., Fardella, C.E. et al. Aldosterone and renin concentrations were abnormally elevated in a cohort of normotensive pregnant women. Endocrine 75, 899–906 (2022). https://doi.org/10.1007/s12020-021-02938-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02938-0

Keywords

Navigation