Skip to main content

Advertisement

Log in

A novel targeted approach to delineate a role for estrogen receptor-β in ameliorating murine mammary tumor-associated neuroinflammation

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Circulating estrogens in breast cancer patients and survivors are often extremely low due to menopause and estrogen-reducing cancer treatments. Simultaneously, circulating inflammatory markers, and inflammatory proteins in brains of rodent tumor models, can be elevated and correlate with debilitating neurological and psychological comorbidities. Because estrogen has anti-inflammatory properties in the brain, we hypothesized that mammary tumor-induced neuroinflammation is driven, in part, by reduced brain estrogen signaling.

Methods

An ovariectomized mouse model of postmenopausal breast cancer utilizing the ERα-positive 67NR mammary tumor cell line was used for these experiments. A novel, orally bioavailable, and brain penetrant ERβ agonist was administered daily via oral gavage. Following treatment, estrogen-responsive genes were measured in brain regions. Central and circulating inflammatory markers were measured via RT-qPCR and a multiplex cytokine array, respectively.

Results

We present novel findings that peripheral mammary tumors alter estrogen signaling genes including receptors and aromatase in the hypothalamus, hippocampus, and frontal cortex. Mammary tumors induced peripheral and central inflammation, however, pharmacological ERβ activation was not sufficient to reduce this inflammation.

Conclusions

Data presented here suggest that compensating for low circulating estrogen with ERβ brain activation is not sufficient to attenuate mammary tumor-induced neuroinflammation, and is therefore not a likely candidate for the treatment of behavioral symptoms in patients. The novel finding that mammary tumors alter estrogen signaling-related genes is a clinically relevant advancement to the understanding of how peripheral tumor biology modulates neurobiology. This is necessary to predict and prevent behavioral comorbidities (e.g., cognitive impairment) prevalent in cancer patients and survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Primary data will be made available upon request. For access to OSU-ERβ-12 please consult Dr. Christopher Coss of The Ohio State University, Comprehensive Cancer Center, Drug Development Institute.

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020. CA Cancer J. Clin. (2020). https://doi.org/10.3322/caac.21590

  2. L.M. Hess, K.C. Insel, Chemotherapy-related change in cognitive function: a conceptual model. Oncol. Nurs. Forum (2007). https://doi.org/10.1188/07.ONF.981-994

  3. J.R. Satin, W. Linden, M.J. Phillips, Depression as a predictor of disease progression and mortality in cancer patients: a meta-analysis. Cancer (2009). https://doi.org/10.1002/cncr.24561

  4. M.C. Janelsins, K.M. Mustian, O.G. Palesh, S.G. Mohile, L.J. Peppone, L.K. Sprod, C.E. Heckler, J.A. Roscoe, A.W. Katz, J.P. Williams, G.R. Morrow, Differential expression of cytokines in breast cancer patients receiving different chemotherapies: implications for cognitive impairment research. Support. Care Cancer (2012). https://doi.org/10.1007/s00520-011-1158-0

  5. M. Seretny, G.L. Currie, E.S. Sena, S. Ramnarine, R. Grant, MacLeod M.R., L.A. Colvin, M. Fallon, Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain (2014). https://doi.org/10.1016/j.pain.2014.09.020

  6. A. Schrepf, S.K. Lutgendorf, L.M. Pyter, Pre-treatment effects of peripheral tumors on brain and behavior: Neuroinflammatory mechanisms in humans and rodents. Brain Behav. Immun. (2015). https://doi.org/10.1016/j.bbi.2015.04.010

  7. R.M. Barrientos, L.D. Strehle, A.A. Lahoud, L.M. Pyter, Mammary tumors suppress aging-induced neuroinflammation in female Balb/c mice. Compr. Psychoneuroendocrinol. (2020). https://doi.org/10.1016/j.cpnec.2020.100002

  8. L.M. Pyter, V. Pineros, J.A. Galang, M.K. McClintock, B.J. Prendergast, Peripheral tumors induce depressive-like behaviors and cytokine production and alter hypothalamic-pituitary-adrenal axis regulation. Proc. Natl. Acad. Sci. (2009). https://doi.org/10.1073/pnas.0811949106

  9. N.L. Sparkman, J.B. Buchanan, J.R.R. Heyen, J. Chen, J.L. Beverly, R.W. Johnson, Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers. J. Neurosci. (2006). https://doi.org/10.1523/JNEUROSCI.3376-06.2006

  10. D.M. Norden, J.P. Godbout, Review: Microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol. Appl. Neurobiol. (2013). https://doi.org/10.1111/j.1365-2990.2012.01306.x

  11. L. Pietranera, M.J. Bellini, M.A. Arévalo, R. Goya, M.E. Brocca, L.M. Garcia-Segura, A.F. De Nicola, Increased aromatase expression in the hippocampus of spontaneously hypertensive rats: effects of estradiol administration. Neuroscience (2011). https://doi.org/10.1016/j.neuroscience.2010.11.044

  12. M.I. Rossberg, S.J. Murphy, R.J. Traystman, P.D. Hurn, LY353391.HCl, a Selective Estrogen Receptor Modulator and Experimental Stroke. Stroke (2000). https://doi.org/10.1161/01.str.31.12.3041

  13. H.V.O. Carswell, A.F. Dominiczak, L.M. Garcia-Segura, N. Harada, J.B. Hutchinson, I.M. Macrae, Brain aromatase expression after experimental stroke: topography and time course. J. Steroid Biochem. Mol. Biol. (2005). https://doi.org/10.1016/j.jsbmb.2005.02.016

  14. C.E. DeSantis, J. Ma, M.M. Gaudet, L.A. Newman, K.D. Miller, A.G. Sauer, A. Jemal, R.L. Siegel, Breast cancer statistics, 2019. CA Cancer J. Clin. (2019). https://doi.org/10.3322/caac.21583

  15. X. Qian, Z. Li, G. Ruan, C. Tu, W. Ding, Efficacy and toxicity of extended aromatase inhibitors after adjuvant aromatase inhibitors-containing therapy for hormone-receptor-positive breast cancer: a literature-based meta-analysis of randomized trials. Breast Cancer Res. Treat. (2020). https://doi.org/10.1007/s10549-019-05464-w

  16. H.K. Patel, T. Bihani, Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther. (2018). https://doi.org/10.1016/J.PHARMTHERA.2017.12.012

  17. W.M. Pardridge, L.J. Mietus, Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone. J. Clin. Investig. (1979). https://doi.org/10.1172/JCI109433

  18. M. Bixo, T. Bäckström, B. Winblad, A. Andersson, Estradiol and testosterone in specific regions of the human female brain in different endocrine states. J. Steroid Biochem. Mol. Biol. (1995). https://doi.org/10.1016/0960-0760(95)00179-4

  19. C.M. Brown, T.A. Mulcahey, N.C. Filipek, P.M. Wise, Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors alpha and beta. Endocrinology (2010). https://doi.org/10.1210/en.2010-0371

  20. E. Vegeto, V. Benedusi, A. Maggi, Estrogen anti-inflammatory activity in brain: A therapeutic opportunity for menopause and neurodegenerative diseases. Front. Neuroendocrinol. (2008). https://doi.org/10.1016/j.yfrne.2008.04.001

  21. D.H. Cribbs, N.C. Berchtold, V. Perreau, P.D. Coleman, J. Rogers, A.J. Tenner, C.W. Cotman, Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflammation (2012). https://doi.org/10.1186/1742-2094-9-179

  22. M. Sárvári, E. Hrabovszky, I. Kalló, N. Solymosi, I. Likό, N. Berchtold, C. Cotman, Z. Liposits, Menopause leads to elevated expression of macrophage-associated genes in the aging frontal cortex: rat and human studies identify strikingly similar changes. J. Neuroinflammation. (2012). https://doi.org/10.1186/1742-2094-9-264

  23. F. Yin, J. Yao, H. Sancheti, T. Feng, R.C. Melcangi, T.E. Morgan, C.E. Finch, C.J. Pike, W.J. Mack, E. Candenas, R.D. Brinton, The perimenopausal aging transition in the female rat brain: Decline in bioenergetic systems and synaptic plasticity. Neurobiol. Aging (2015). https://doi.org/10.1016/j.neurobiolaging.2015.03.013

  24. I. Paterni, C. Granchi, J.A. Katzenellenbogen, F. Minutolo, Estrogen receptors alpha (ERα) and beta (ERβ): Subtype-selective ligands and clinical potential. Steroids (2014). https://doi.org/10.1016/j.steroids.2014.06.012

  25. L.-A. Haldosén, C. Zhao, K. Dahlman-Wright, Estrogen receptor beta in breast cancer. Mol. Cell. Endocrinol. (2014). https://doi.org/10.1016/j.mce.2013.08.005

  26. B.S. McEwen, S.E. Alves, Estrogen Actions in the Central Nervous System. Endocr. Rev. (1999). https://doi.org/10.1210/edrv.20.3.0365

  27. S.L. Petersen, E.N. Ottem, C.D. Carpenter, Direct and Indirect Regulation of Gonadotropin-Releasing Hormone Neurons by Estradiol. Biol. Reprod. (2003). https://doi.org/10.1095/biolreprod.103.019745

  28. S.X. Simonian, D.P. Spratt, A.E. Herbison, Identification and characterization of estrogen receptor α‐containing neurons projecting to the vicinity of the gonadotropin‐releasing hormone perikarya in the rostral preoptic area of the rat. J. Comp. Neurol. (1999). https://doi.org/10.1002/(SICI)1096-9861(19990823)411:2<346::AID-CNE13>3.0.CO;2-S

  29. B.D. Soper, R.F. Weick, Hypothalamic and extrahypothalamic mediation of pulsatile discharges of luteinizing hormone in the ovariectomized rat. Endocrinology (1980). https://doi.org/10.1210/endo-106-1-348

  30. R. Diaz Brinton, Minireview: Translational Animal Models of Human Menopause: Challenges and Emerging Opportunities. Endocrinology (2012). https://doi.org/10.1210/en.2012-1340

  31. J.T. Smith, M.J. Cunningham, E.F. Rissman, D.K. Clifton, R.A. Steiner, Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology (2005). https://doi.org/10.1210/en.2005-0488

  32. E. Hrabovszky, P.J. Shughrue, I. Merchenthaler, T. Hajszán, C.D. Carpenter, Z. Liposits, S.L. Petersen, Detection of estrogen receptor-β messenger ribonucleic acid and 125I-estrogen binding sites in luteinizing hormone-releasing hormone neurons of the rat brain. Endocrinology (2000). https://doi.org/10.1210/endo.141.9.7788

  33. D. Sedlák, T.A. Wilson, W. Tjarks, H.S. Radomska, H. Wang, J. Narayana Kolla, Z.J. Leśnikowski, A. Špičáková, T. Ali, T. Ishita, L. Harinantenaina Rakotondraibe, S. Vibhute, D. Wang, P. Anzenbacher, C. Bennett, P. Barkunet, C.C. Coss, Structure–Activity Relationship of para-Carborane Selective Estrogen Receptor β Agonists. J. Med. Chem. (2021). https://doi.org/10.1021/acs.jmedchem.1c00555

  34. C.J. Aslakson, F.R. Miller, Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52, 1399–1405 (1992)

    CAS  PubMed  Google Scholar 

  35. C.N. Johnstone, Y.E. Smith, Y. Cao, A.D. Burrows, R.S.N. Cross, X. Ling, R.P. Redvers, J.P. Doherty, B.L. Eckhardt, A.L. Natoli, C.M. Restall, E. Lucas, H.B. Pearson, S. Deb, K.L. Britt, A. Rizzitelli, J. Li, J.H. Harmey, N. Pouliot, R.L. Anderson, Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis. Model. Mech. (2015). https://doi.org/10.1242/dmm.017830

  36. L.M. Pyter, L.P. Suarez-Kelly, W.E. Carson, J. Kaur, J. Bellisario, S.R. Bever, Novel rodent model of breast cancer survival with persistent anxiety-like behavior and inflammation. Behav. Brain. Res. (2017). https://doi.org/10.1016/j.bbr.2017.05.011

  37. D.B. Lubahn, J.S. Moyer, T.S. Golding, J.F. Couse, K.S. Korach, O. Smithies, Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. USA. (1993). https://doi.org/10.1073/pnas.90.23.11162

  38. S.K.Das, J.A. Taylor, K.S. Korach, B.C. Paria, K.S. Deb, D.B. Lubahn, Estrogenic responses in estrogen receptor- deficient mice reveal a distinct estrogen signaling pathway. Proc. Natl. Acad. Sci. (1997). https://doi.org/10.1073/pnas.94.24.12786

  39. P.J. Shughrue, D.B. Lubahn, A. Negro-Vilar, K.S. Korach, I. Merchenthaler, Responses in the brain of estrogen receptor α-disrupted mice. Proc. Natl. Acad. Sci. U.S.A. (1997). https://doi.org/10.1073/pnas.94.20.11008

  40. K.J. Hamilton, Y. Arao, K.S. Korach, Estrogen hormone physiology: Reproductive findings from estrogen receptor mutant mice. Reprod. Biol. (2014). https://doi.org/10.1016/j.repbio.2013.12.002

  41. P.A.S. Sheppard, E. Choleris, L.A.M. Galea, Structural plasticity of the hippocampus in response to estrogens in female rodents. Mol. Brain (2019). https://doi.org/10.1186/s13041-019-0442-7

  42. S.W. Mitra, E. Hoskin, J. Yudkovitz, L. Pear, H.A. Wilkinson, S. Hayashi, D.W. Pfaff, S. Ogawa, S.P. Rohrer, J.M. Schaeffer, B.S. McEwen, S.E. Alves, Immunolocalization of Estrogen Receptor β in the Mouse Brain: Comparison with Estrogen Receptor α. Endocrinology (2003). https://doi.org/10.1210/en.2002-221069

  43. P.G. Henke, Hippocampal pathway to the amygdala and stress ulcer development. Brain. Res. Bull. (1990). https://doi.org/10.1016/0361-9230(90)90044-Z

  44. D.S. Gross, Effect of castration and steroid replacement on immunoreactive gonadotropin-releasing hormone in the hypothalamus and preoptic area. Endocrinology (1980). https://doi.org/10.1210/endo-106-5-1442

  45. N.J. MacLusky, A.S. Clark, F. Naftolin, P.S. Goldman-Rakic, Estrogen formation in the mammalian brain: Possible role of aromatase in sexual differentiation of the hippocampus and neocortex. Steroids (1987). https://doi.org/10.1016/0039-128X(87)90032-8

  46. E. Fuente-Martin, C. Garcia-Caceres, E. Morselli, D.J. Clegg, J.A. Chowen, B. Finan, R.D. Brinton, M.H. Tschöp, Estrogen, astrocytes and the neuroendocrine control of metabolism. Rev. Endocr. Metab. Disord. (2013). https://doi.org/10.1007/s11154-013-9263-7

  47. A. Villa, E. Vegeto, A. Poletti, A. Maggi, Estrogens, Neuroinflammation, and Neurodegeneration. Endocr. Rev. (2016). https://doi.org/10.1210/er.2016-1007

  48. R.H. Straub, The complex role of estrogens in inflammation. Endocr. Rev. (2007). https://doi.org/10.1210/er.2007-0001

  49. R. Caso, R. Silvera, R. Carrio, V. Iragavarapu-Charyulu, R.R. Gonzalez-Perez, M. Torroella-Kouri, Blood monocytes from mammary tumor-bearing mice: Early targets of tumor-induced immune suppression? Int. J. Oncol. (2010). https://doi.org/10.3892/ijo_00000740

  50. E.J. Kovacs, T.P. Plackett, P.L. Witte, Estrogen replacement, aging, and cell-mediated immunity after injury. J. Leukoc. Biol. (2004). https://doi.org/10.1189/jlb.1103538

  51. H.J. Son, S.H. Sohn, N. Kim, H.-N. Lee, S.M. Lee, R.H. Nam, J.H. Park, C.-H. Song, E. Shin, H.Y. Na, J.S. Kim, D.H. Lee, Y.-J. Surh, Effect of Estradiol in an Azoxymethane/Dextran Sulfate Sodium-Treated Mouse Model of Colorectal Cancer: Implication for Sex Difference in Colorectal Cancer Development. Cancer Res. Treat. (2019). https://doi.org/10.4143/crt.2018.060

  52. E.T. Fantozzi, A.C. Breithaupt-Faloppa, F.Y. Ricardo-da-Silva, S. Rodrigues-Garbin, D.C. Romero, A. da Silva Rodrigues, Y. Riffo-Vasquez, W. Taveres-de-Lima, Estradiol mediates the long-lasting lung inflammation induced by intestinal ischemia and reperfusion. J. Surg. Res. (2018). https://doi.org/10.1016/j.jss.2017.07.038

  53. M. Yang, J. Kim, J.-S. Kim, S.-H. Kim, J.-C. Kim, M.-J. Kang, U. Jung, T. Shin, H. Wang, C. Moon, Hippocampal dysfunctions in tumor-bearing mice. Brain Behav. Immun. (2014). https://doi.org/10.1016/j.bbi.2013.10.022

  54. A.J. Bruce-Keller, J.L. Keeling, J.N. Keller, F.F. Huang, S. Camondola, M.P. Mattson, Antiinflammatory Effects of Estrogen on Microglial Activation. Endocrinology (2000). https://doi.org/10.1210/endo.141.10.7693

  55. Y. Xu, H. Sheng, Z. Tang, J. Lu, X. Ni, Inflammation and increased IDO in hippocampus contribute to depression-like behavior induced by estrogen deficiency. Behav. Brain Res. (2015). https://doi.org/10.1016/j.bbr.2015.04.017

  56. Z. Tian, J. Fan, Y. Zhao, S. Bi, L. Si, Q. Liu, Estrogen receptor beta treats Alzheimer’s disease. Neural Regen. Res. (2013). https://doi.org/10.3969/j.issn.1673-5374.2013.05.005

  57. K.G. Vargas, J. Milic, A. Zaciragic, K.-X. Wen, L. Jaspers, J. Nano, K. Dhana, W.M. Bramer, B. Kraja, E. van Beeck, M.A. Ikram, T. Muka, O.H. Franco, The functions of estrogen receptor beta in the female brain: a systematic review. Maturitas (2016). https://doi.org/10.1016/j.maturitas.2016.05.014

  58. V.L. Nordell, M.M. Scarborough, A.K. Buchanan, F. Sohrabji, Differential effects of estrogen in the injured forebrain of young adult and reproductive senescent animals. Neurobiol. Aging (2003). https://doi.org/10.1016/S0197-4580(02)00193-8

  59. J.C. Santos, S.R. Bever, G. Pereira-da-Silva, L.M. Pyter, Tumor resection ameliorates tumor-induced suppression of neuroinflammatory and behavioral responses to an immune challenge in a cancer survivor model. Sci. Rep. (2019). https://doi.org/10.1038/s41598-018-37334-8

  60. E. Ogura, K. Kageyama, K. Hanada, J. Kasckow, T. Suda, Effects of estradiol on regulation of corticotropin-releasing factor gene and interleukin-6 production via estrogen receptor type β in hypothalamic 4B cells. Peptides (2008). https://doi.org/10.1016/j.peptides.2007.11.007

Download references

Acknowledgements

The authors thank Lindsay Strehle, Valerie Burch, Ann Thomas, and Aliza Khuro for their skilled technical assistance, as well as Megan Fleming and Dr. Stacey Meeker for animal husbandry and veterinary support, respectively. We also acknowledge Drs. Christopher Coss and Chad Bennet of The Ohio State University, Comprehensive Cancer Center, Drug Development Institute for their technical help using and quantifying the novel compound.

Author contributions

K.L.G.R. and L.M.P. contributed to the conceptual design of the study. K.L.G.R. and C.V.G. were responsible for data collection and analysis. All authors contributed to data interpretation, paper preparation, and approved the final version of the paper for submission.

Funding

This work was supported by The Ohio State University Comprehensive Cancer Center’s Drug Development Institute (institutional grant, 2019), funds from The Ohio State College of Medicine, and a NIH/NCI fellowship (K.L.G.R.) [T32CA009338].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah M. Pyter.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The data described here are original and have not been previously published. All procedures and experiments were approved by The Ohio state University Institutional Animal Care and Use Committee (IACUC, 2014A00000093, approved 08/04/2020) and carried out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, C.V., Russart, K.L.G. & Pyter, L.M. A novel targeted approach to delineate a role for estrogen receptor-β in ameliorating murine mammary tumor-associated neuroinflammation. Endocrine 75, 949–958 (2022). https://doi.org/10.1007/s12020-021-02931-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02931-7

Keywords

Navigation