Skip to main content

Advertisement

Log in

Diabetic ketoacidosis causes chronic elevation in renal C-C motif chemokine ligand 5

  • Research Letter
  • Published:
Endocrine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

All data support the published claims and comply with field standards.

References

  1. R. Alicic, M. Rooney, K. Tuttle, Diabetic kidney disease; challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 12, 2032–2045 (2017)

    Article  CAS  Google Scholar 

  2. D. Maahs, J. Hermann, N. Holman, N. Foster, T. Kapellen, J. Allgrove, D. Schatz, S. Hofer, F. Campbell, C. Steigleder-Schweiger, R. Beck, J. Warner, R. Holl, D.M. Maahs, J.M. Hermann, N. Holman, N.C. Foster, T.M. Kapellen, J. Allgrove et al. Rates of diabetic ketoacidosis: international comparison with 49,859 pediatric patients with type 1 diabetes from England, Wales, the U.S., Austria, and Germany. Diabetes Care 38(10), 1876–1882 (2015)

    Article  CAS  Google Scholar 

  3. D. Dabelea, A. Rewers, J. Stafford, D. Standiford, J. Lawrence, S. Saydah, G. Imperatore, R.J. D’Agostino, E. Mayer-Davis, C. Pihoker; Group SfDiYS, Trends in the prevalence of ketoacidosis at diabetes diagnosis: the SEARCH for diabetes in youth study. Pediatrics. 133(4), e938–e945 (2014)

    Article  Google Scholar 

  4. A.L. Rosenbloom, J.H. Silverstein, S. Amemiya, P. Zeitler, G.J. Klingensmith, Type 2 diabetes in children and adolescents. Pediatric Diabetes 10(Suppl 12), 17–32 (2009)

    Article  Google Scholar 

  5. G. Klingensmith, C. Connor, K. Ruedy, R. Beck, C. Kollman, H. Haro, J. Wood, J. Lee, S. Willi, E. Cengiz, W. Tamborlane, P.D. Consortium, Presentation of youth with type 2 diabetes in the Pediatric Diabetes Consortium. Pediatr. Diab. 17, 266–273 (2016)

    Article  CAS  Google Scholar 

  6. S. Myers, N. Glaser, J. Trainor, L. Nigrovic, A. Garro, L. Tzimenatos, K. Quayle, M. Kwok, A. Rewers, M. Stoner, J. Schunk, J. McManemy, K. Brown, A. DePiero, C. Olsen, T. Casper, S. Ghetti, N. Kuppermann, Frequency and risk factors of acute kidney injury during diabetic ketoacidosis in children and association with neurocognitive outcomes. JAMA Netw. Open. 3(12), e2025481 (2020)

    Article  Google Scholar 

  7. B. Hursh, R. Ronsley, N. Islam, C. Mammen, C. Panagiotopoulos, Acute kidney injury in children with type 1 diabetes hospitalized for diabetic ketoacidosis. JAMA Pediatr. 171(5), e170020 (2017)

    Article  Google Scholar 

  8. S.K. Huang, C.Y. Huang, C.H. Lin, B.W. Cheng, Y.T. Chiang, Y.C. Lee, S.N. Yeh, C.I. Chan, W.K. Chua, Y.J. Lee, W.H. Ting, Acute kidney injury is a common complication in children and adolescents hospitalized for diabetic ketoacidosis. PLoS One 15(10), e0239160 (2020)

    Article  CAS  Google Scholar 

  9. Huang J., Casper T., Pitts C., Myers S., Loomba L., Ramesh J., Kuppermann N., Glaser N. Risk of microalbuminuria is increased in children with type 1 diabetes who develop acute kidney injury during diabetic ketoacidosis. Pers. Commun. 2021.

  10. N. Glaser, S. Chu, B. Hung, L. Fernandez, H. Wulff, D. Tancredi, M.E. O’Donnell, Acute and chronic neuroinflammation is triggered by diabetic ketoacidosis in a rat model. BMJ Open Diabetes Res. Care 8, e001793 (2020)

    PubMed  PubMed Central  Google Scholar 

  11. R. Hulse, P. Kunkler, J. Fedynyshyn, R. Kraig, Optimization of multiplexbead-based cytokine immunoassays for rat serum and brain tissue. J. Neurosci. Methods 136(1), 87–98 (2004).

    Article  CAS  Google Scholar 

  12. A. Krensky, Y. Ahn, Mechanisms of disease: regulation of RANTES (CCL5) in renal disease. Nat. Clin. Pract. Nephrol. 3(3), 164–170 (2007)

    Article  CAS  Google Scholar 

  13. D. Verzola, L. Cappuccino, E. D’Amato, B. Villaggio, F. Gianiorio, M. Mij, A. Simonato, F. Viazzi, G. Salvidio, G. Garibotto, Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria. Kidney Int. 86(6), 1229–1243 (2014)

    Article  CAS  Google Scholar 

  14. C. Thakar, A. Christianson, J. Himmelfarb, A. Leonard, Acute kidney injury episodes and chronic kidney disease risk in diabetes mellitus. Clin. J. Am. Soc. Nephrol. 6(11), 2567–2572 (2011)

    Article  CAS  Google Scholar 

  15. J. Chen, H. Zeng, X. Ouyang, M. Zhu, Q. Huang, W. Yu, L. Ling, H. Lan, A. Xu, Y. Tang, The incidence, risk factors, and long-term outcomes of acute kidney injury in hospitalized diabetic ketoacidosis patients. BMC Nephrol 21, 48 (2020)

    Article  CAS  Google Scholar 

  16. M. Ascon, D. Ascon, M. Liu, C. Cheadle, C. Sarkar, L. Racusen, H. Hassoun, H. Rabb, Renal ischemia-reperfusion leads to long term infiltration of activated and effector-memory T lymphocytes. Kidney Int. 75(5), 526–535 (2009)

    Article  CAS  Google Scholar 

  17. M. Burne-Taney, M. Liu, D. Ascon, R. Molls, L. Racusen, H. Rabb, Transfer of lymphocytes from mice with renal ischemia can induce albuminuria in naive mice: a possible mechanism linking early injury and progressive renal disease? Am. J. Physiol. Renal. Physiol. 291(5), F981–F986 (2006)

    Article  CAS  Google Scholar 

  18. L. White, H. Hassoun, Inflammatory mechanisms of organ crosstalk during ischemic acute kidney injury. Int. J. Nephrol. 2012, 505197 (2012)

    Article  Google Scholar 

  19. J. Moon, K. Jeong, T. Lee, C. Ihm, S. Lim, S. Lee, Aberrant recruitment and activation of T cells in diabetic nephropathy. Am. J. Nephrol. 35(2), 164–174 (2012)

    Article  CAS  Google Scholar 

  20. C. Wu, H. Sytwu, K. Lu, Y. Lin, Role of T cells in type 2 diabetic nephropathy. Exp. Diabetes Res. 2011, 514738 (2011). ePub

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Boram Lee for helping us to optimize the procedures for kidney lysate preparation. We also appreciate the assistance of Dr Yi-Je Chen in conducting the small animal procedures and Dr JoAnn Yee in conducting the multiplex assays.

Funding

These studies were supported by American Diabetes Association basic science grant 1-17-IBS-186 (to N.G.).

Author information

Authors and Affiliations

Authors

Contributions

N.G. designed the study, obtained funding, supervised data collection, analyzed and interpreted data, and drafted the manuscript. L.F. and S.C. collected the study data, assisted in data analysis and reviewed and edited the manuscript. M.E.O’D assisted in designing the study and obtaining funding, supervised data collection, assisted with analyzed data and interpretation and reviewed and edited the manuscript. All authors have approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Nicole Glaser.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study followed the Animal Use and Care Guidelines issued by the National Institutes of Health and was approved by the Animal Use and Care Committee at the University of California Davis.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glaser, N., Fernandez, L., Chu, S. et al. Diabetic ketoacidosis causes chronic elevation in renal C-C motif chemokine ligand 5. Endocrine 75, 650–653 (2022). https://doi.org/10.1007/s12020-021-02928-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02928-2

Navigation