Skip to main content
Log in

Plasma aldosterone concentration is associated with white matter lesions in patients with primary aldosteronism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Primary aldosteronism (PA) is the most frequent form of secondary hypertension. Hypertension is a risk factor for cognitive decline and dementia. White matter lesions (WMLs) are linked to vascular risk factors, which increase the risk of dementia. We aimed to analyze the association of PA-related parameters and WMLs in patients with PA.

Methods

We conducted a retrospective analysis of all patients with PA in the Hypertension Center of the People’s Hospital of Xinjiang Uygur Autonomous Region from January 1, 2011 to April 1, 2021. We analyzed the relationship between plasma aldosterone concentration (PAC), plasma renin activity (PRA), aldosterone–renin ratio (ARR), serum potassium, and WMLs.

Results

We enrolled 138 patients with WMLs and matched these to controls without WMLs at a 1:4 ratio. Among the analytic sample (N = 711) with ages ranging from 30 to 64 years, 69% were male. In the logistic regression analysis, PAC, PRA and serum potassium were treated as continuous variables. The results showed that PAC (OR 1.04, 95% CI 1.01, 1.06, P = 0.008) was positively associated with the risk of WMLs, and serum potassium (OR 0.26, 95% CI 0.16, 0.44, P < 0.001) was inversely associated with the risk of WMLs. PRA (OR 0.86, 95% CI 0.68, 1.08, P = 0.384) was not associated with the risk of WMLs after adjusting for confounders. The results of restricted cubic splines showed the dose-response association between increasing PAC, ARR, decreasing serum potassium, and the risk of WMLs. We also divided PAC, ARR and serum potassium into two groups according to the result of restricted cubic splines. After adjusting for confounders, patients who were in Q2 (≥23.12 ng/dl) of PAC (OR 2.07, 95% CI 1.36, 3.15), Q2 (≥56.81 (ng/dl per ng/ml*h) of ARR (OR 1.82, 95% CI 1.22, 2.72) and Q2 (≤3.58 mmol/l) of serum potassium (OR 2.99, 95% CI 1.95, 4.50) had a significantly higher risk of WMLs than their counterparts. In stratified analyses, there was no evidence of subgroup heterogeneity regarding the change in the risk of WMLs (P > 0.05 for interaction for all).

Conclusion

Our results suggested that the PAC and serum potassium were related to the risk of WMLs in patients with PA. In particular, PAC ≥23.12 ng/dl significantly increased the risk of WMLs in patients with PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

We can provide data by e-mail at any time.

References

  1. S. Monticone, J. Burrello, D. Tizzani, C. Bertello, A. Viola, F. Buffolo, L. Gabetti, G. Mengozzi, Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J. Am. Coll. Cardiol. 69(14), 1811–1820 (2017). https://doi.org/10.1016/j.jacc.2017.01.052

    Article  PubMed  Google Scholar 

  2. J.W. Funder, Primary aldosteronism: present and future. Vitam. Horm. 109, 285–302 (2019). https://doi.org/10.1016/bs.vh.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  3. J.W. Funder, R.M. Carey, F. Mantero, M.H. Murad, M. Reincke, H. Shibata, M. Stowasser, W.F. Young Jr., The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J. Clin. Endocrinol Metab. 101(5), 1889–1916 (2016). https://doi.org/10.1210/jc.2015-4061

    Article  CAS  PubMed  Google Scholar 

  4. M. Parasiliti-Caprino, C. Lopez, N. Prencipe, B. Lucatello, F. Settanni, G. Giraudo, D. Rossato, Prevalence of primary aldosteronism and association with cardiovascular complications in patients with resistant and refractory hypertension. J. Hypertens. 38(9), 1841–1848 (2020). https://doi.org/10.1097/HJH.0000000000002441

    Article  CAS  PubMed  Google Scholar 

  5. M. Reincke, Primary aldosteronism and cardiovascular events: it is time to take guideline recommendations seriously. Hypertension 71(3), 413–414 (2018). https://doi.org/10.1161/HYPERTENSIONAHA.117.10405

    Article  CAS  PubMed  Google Scholar 

  6. V.C. Wu, S.M. Wang, C.H. Chang, Y.H. Hu, L.Y. Lin, Y.H. Lin, S.C. Chueh, L. Chen, K.D. Wu, Long term outcome of aldosteronism after target treatments. Sci. Rep. 6, 32103 (2016). https://doi.org/10.1038/srep32103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Monticone, F. D’Ascenzo, C. Moretti, T.A. Williams, F. Veglio, F. Gaita, P. Mulatero, Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 6, 41–50 (2018). https://doi.org/10.1016/S2213-8587(17)30319-4

    Article  CAS  PubMed  Google Scholar 

  8. G.L. Hundemer, G.C. Curhan, N. Yozamp, M. Wang, A. Vaidya, Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 6, 51–59 (2018). https://doi.org/10.1016/S2213-8587(17)30367-4

    Article  PubMed  Google Scholar 

  9. P.J. Fuller, M.J. Young, Mechanisms of mineralocorticoid action. Hypertension. 46(6), 1227–1235 (2005). https://doi.org/10.1161/01.HYP.0000193502.77417.17

    Article  CAS  PubMed  Google Scholar 

  10. C.A. Northcott, G.D. Fink, H. Garver, J.R. Haywood, E.L. Laimon-Thomson, J.L. McClain, P.W. Pires, W.E. Rainey, C.S. Rigsby, A.M. Dorrance, The development of hypertension and hyperaldosteronism in a rodent model of life-long obesity. Endocrinology. 153(4), 1764–1773 (2012). https://doi.org/10.1210/en.2011-1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P.W. Pires, J.L. Mclain, S.F. Hayoz, A.M. Dorrance, Mineralocorticoid receptor antagonism prevents obesity-induced cerebral artery remodeling and reduces white matter injury in rats. Microcirculation. 25(5), e12460 (2018). https://doi.org/10.1111/micc.12460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Q.N. Dinh, M.J. Young, M.A. Evans, G.R. Drummond, C.G. Sobey, S. Chrissobolis, Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res. 1637, 146–153 (2016). https://doi.org/10.1016/j.brainres.2016.02.034

  13. J.M. Wardlaw, E.E. Smith, G.J. Biessels, C. Cordonnier, F. Fazekas, R. Frayne, R.I. Lindley, J.T. O’Brien et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12(8), 822–838 (2013). https://doi.org/10.1016/S1474-4422(13)70124-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. M.E. Cahgiuri, P. Peotta, A. Augimeri, F. Rocca, A. Quattrone, A. Cherubini, Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resollauce knagmg: a review. Neuromformatics 13(31), 261–276 (2015). https://doi.org/10.1007/s1202l-015.9260-v

  15. A.H. Hainsworth, J. Miner T’Andoh, G. Forster, I. Bhide, T.R. Barrick, K. Elderfield, J. Jeevahan, H.S. Markus, L.R. Bridges, Neuropathology of white matter lesions, blood-brain barrier dysfunction, and dementia. Stroke 48(10), 2799–2804 (2017). https://doi.org/10.1161/STROKEAHA.117.018101

    Article  PubMed  PubMed Central  Google Scholar 

  16. Y.P. Coutu, A. Goldblatt, I.-I.D. Rosas, D.H. Rosas, Alzheimer’s Disease Neuroimaging Initiative (ADNI), White matter changes are associated with ventricular expansion in aging, mild cognitive impairment, and Alzheimer’s disease. J. AIzheimers Dis. 49(2), 329–342 (2016). 10.3233HAD-150306.

  17. L. Wang, C.O. Leonards, P. Sterzer, M. Ebinger, White matter lesions and depression: a systematic review and meta-analysis. J. Psychiatr. Res. 56, 56–64 (2014). https://doi.org/10.1016/j.jpsychires.2014.05.005

    Article  PubMed  Google Scholar 

  18. L.H. Kuller, W.T. Longstreth, A.M. Arnold, C. Bernick, R.N. Bryan, N.J. Beauchamp, White matter hyperintensity on cranial magnetic resonance imaging: a predictor of stroke. Stroke 35, 1821–1825 (2004). https://doi.org/10.1161/01.STR.0000132193.35955.69

    Article  PubMed  Google Scholar 

  19. L. Pantoni, Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9(7), 689–701 (2010). https://doi.org/10.1016/S1474-4422(10)70104-6

    Article  PubMed  Google Scholar 

  20. L. Wolfson, D.B. Wakefield, N. Moscufo, R.F. Kaplan, C.B. Hall, J.A. Schmidt, C.R. Guttmann, W.B. White, Rapid buildup of brain white matter hyperintensities over 4 years linked toambulatory blood pressure, mobility, cognition, and depression in old persons. J. Gerontol. A Biol. Sci. Med. Sci. 68(11), 1387–1394 (2013). https://doi.org/10.1093/gerona/glt072

    Article  PubMed  PubMed Central  Google Scholar 

  21. C.J. McNeil, P.K. Myint, A.L. Sandu, J.F. Potter, R. Staff, L.J. Whalley, A.D. Murray, Increased diastolic blood pressure is associated with MRI biomarkers of dementia-related brain pathology in normative ageing. Age Ageing 47, 95–100 (2018). https://doi.org/10.1093/ageing/afx102

    Article  PubMed  Google Scholar 

  22. B.S. Aribisala, Z. Morris, E. Eadie, A. Thomas, A. Gow, M.C. V aldés Hernández, N.A. Royle, M.E. Bastin, Blood pressure, internal carotid artery flow parameters, and age-related white matter hyperintensities. Hypertension 63, 1011–1018 (2014). https://doi.org/10.1161/HYPERTENSIONAHA.113.02735

    Article  CAS  PubMed  Google Scholar 

  23. M. Shokouhi, D. Qiu, A. Samman Tahhan, A.A. Quyyumi, I. Hajjar, Differential associations of diastolic and systolic pressures with cerebral measures in older individuals with mild cognitive impairment. Am. J. Hypertens. 31, 1268–1277 (2018). https://doi.org/10.1093/ajh/hpy104

    Article  PubMed  PubMed Central  Google Scholar 

  24. J.F. Meschia, C.D. Bushnell, B. Boden-Albala, L.Y. Braun, D.M. Bravata, S. Chaturvedi, J.F. Meschia, C. Bushnell, B. Boden-Albala, L.T. Braun, D.M. Bravata, S. Chaturvedi, M.A. Creager, R.H. Eckel, M.S. Elkind, M. Fornage, L.B. Goldstein, S.M. Greenberg, S.E. Horvath, C. Iadecola, E.C. Jauch, W.S. Moore, J.A. Wilson; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Functional Genomics and Translational Biology; Council on Hypertension, Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45, 3754–3832 (2014). https://doi.org/10.1161/STR.0000000000000046

  25. K.A. Walker, A.R. Sharrett, A. Wu, A.L.C. Schneider, M. Albert, P.L. Lutsey, K. Bandeen-Roche, J. Coresh, A.L. Gross, B.G. Windham, D.S. Knopman, M.C. Power, A.M. Rawlings, T.H. Mosley, R.F. Gottesman, Association of midlife to late-life blood pressure patterns with incident dementia. JAMA 322, 535–545 (2019). https://doi.org/10.1001/jama.2019.10575

    Article  PubMed  PubMed Central  Google Scholar 

  26. J.W. Funder, R.M. Carey, F. Mantero, M.H. Murad, M. Reincke, H. Shibata, M. Stowasser, W.F. Young Jr., The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 101(5), 1889–1916 (2016). https://doi.org/10.1210/jc.2015-4061

    Article  CAS  PubMed  Google Scholar 

  27. X. Wang, Q. Luo, M. Wang, J. Hu, D. Zhang, W. Zhang, G. Wang, N. Li, Long-term impact of spironolactone compliance on microalbuminuria in patients with primary aldosteronism. Hypertens Res. 44(4), 426–434 (2021). https://doi.org/10.1038/s41440-020-00589-8

    Article  CAS  PubMed  Google Scholar 

  28. Q. Luo, N. Li, M. Wang, X. Yao, M. Heizhati, D. Zhang, K. Zhou, G. Wang, J. Hu, B. Zhu, Mild primary aldosteronism (PA) followed by overt PA are possibly the most common forms of low renin hypertension: a single-center retrospective study. J. Hum. Hypertens. 34(9), 633–640 (2020). https://doi.org/10.1038/s41371-019-0291-y

    Article  PubMed  Google Scholar 

  29. Q. Luo, N.F. Li, X.G. Yao, D.L. Zhang, S.F. Abulikemu, G.J. Chang, K.M. Zhou, G.L. Wang, M.H. Wang, W.J. Ouyang, Q.Y. Cheng, Y. Jia, Potential effects of age on screening for primary aldosteronism. J. Hum. Hypertens. 30(1), 53–61 (2016). https://doi.org/10.1038/jhh.2015.21

    Article  CAS  PubMed  Google Scholar 

  30. F. Beygui, G. Montalescot, E. Vicaut, S. Rouanet, E. Van Belle, C. Baulac, A. Degrandsart, J. Dallongeville; OPERA Investigator, Aldosterone and long-term outcome after myocardial infarction: a substudy of the French nationwide observatoire sur la prise en charge hospitalière, l’Evolution à un an et les caRactéristiques de patients présentant un infArctus du myocarde avec ou sans onde Q (OPERA) study. Am. Heart J. 157, 680–687 (2009). https://doi.org/10.1016/j.ahj.2008.12.013

  31. F. Ivanes, S. Susen, F. Mouquet, P. Pigny, F. Cuilleret, K. Sautière, J.P. Collet, F. Beygui, B. Hennache, P.V. Ennezat et al. Aldosterone, mortality, and acute ischaemic events in coronary artery disease patients outside the setting of acute myocardial infarction or heart failure. Eur. Heart J. 33, 191–202 (2012). https://doi.org/10.1093/eurheartj/ehr176

    Article  CAS  PubMed  Google Scholar 

  32. S. Monticone, F. D’Ascenzo, C. Moretti, T.A. Williams, F. Veglio, F. Gaita, P. Mulatero, Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 6, 41–50 (2018). https://doi.org/10.1016/S2213-8587(17)30319-4

    Article  CAS  PubMed  Google Scholar 

  33. S. Keidar, M. Kaplan, E. Pavlotzky, R. Coleman, T. Hayek, S. Hamoud, M. Aviram, Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development. Circulation. 109, 2213–2220 (2004). https://doi.org/10.1161/01.CIR.0000127949.05756.9D

    Article  CAS  PubMed  Google Scholar 

  34. A.P. McGraw, J. Bagley, W.S. Chen, C. Galayda, H. Nickerson, A. Armani, M. Caprio, P. Carmeliet, I.Z. Jaffe, Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism. J. Am. Heart Assoc. 2, e000018 (2013). https://doi.org/10.1161/JAHA.112.000018

    Article  PubMed  PubMed Central  Google Scholar 

  35. P.W. Pires, W.F. Jackson, A.M. Dorrance, Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. Am. J. Physiol. Heart Circ. Physiol. 309(1), H127–H136 (2015). https://doi.org/10.1152/ajpheart.00168.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A.M. Dorrance, N.C. Rupp, E.F. Nogueira, Mineralocorticoid receptor activation causes cerebral vessel remodeling and exacerbates the damage caused by cerebral ischemia. Hypertension. 47(3), 590–595 (2006). https://doi.org/10.1161/01.HYP.0000196945.73586.0d

    Article  CAS  PubMed  Google Scholar 

  37. P. Verpillat, A. Alpérovitch, F. Cambien, V. Besançon, H. Desal, C. Tzourio, Aldosterone synthase (CYP11B2) gene polymorphism and cerebral white matter hyperintensities. Neurology 56(5), 673–675 (2001). https://doi.org/10.1212/wnl.56.5.673

    Article  CAS  PubMed  Google Scholar 

  38. P.J. Fuller, K. Verity, Mineralocorticoid receptor gene expression in the gastrointestinal tract: distribution and ontogeny. J. Steroid. Biochem. 36(4), 263–267 (1990). https://doi.org/10.1016/0022-4731(90)90215-e

    Article  CAS  PubMed  Google Scholar 

  39. P.J. Fuller, J. Yang, M.J. Young, Mechanisms of mineralocorticoid receptor signaling. Vitam. Horm. 109, 37–68 (2019). https://doi.org/10.1016/bs.vh.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  40. T.M. De Silva, M.L. Modrick, J.L. Grobe, F.M. Faraci, Activation of the central renin-angiotensin system causes local cerebrovascular dysfunction. Stroke. 52(7), 2404–2413 (2021). https://doi.org/10.1161/STROKEAHA.121.034984

    Article  CAS  PubMed  Google Scholar 

  41. J.M. Diaz-Otero, C. Fisher, K. Downs, M.E. Moss, I.Z. Jaffe, W.F. Jackson, A.M. Dorrance, Endothelial mineralocorticoid receptor mediates parenchymal arteriole and posterior cerebral artery remodeling during angiotensin II-induced hypertension. Hypertension. 70(6), 1113–1121 (2017). https://doi.org/10.1161/HYPERTENSIONAHA.117.09598

    Article  CAS  PubMed  Google Scholar 

  42. P.W. Pires, J.L. McClain, S.F. Hayoz, A.M. Dorrance, Mineralocorticoid receptor antagonism prevents obesity-induced cerebral artery remodeling and reduces white matter injury in rats. Microcirculation 25(5), e12460 (2018). https://doi.org/10.1111/micc.12460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. L.S. Johnson, N. Mattsson, A. Sajadieh, P. Wollmer, M. Söderholm, Serum potassium is positively associated with stroke and mortality in the large, population-based malmö preventive project cohort. Stroke 48(11), 2973–2978 (2017). https://doi.org/10.1161/STROKEAHA.117.018148

    Article  CAS  PubMed  Google Scholar 

  44. F. Matano, Y. Fujiki, T. Mizunari, K. Koketsu, T. Tamaki, Y. Murai, H. Yokota, A. Morita, Serum glucose and potassium ratio as risk factors for cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J. Stroke Cerebrovasc. Dis. 28(7), 1951–1957 (2019). https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.041

    Article  PubMed  Google Scholar 

  45. B.E. Grueter, U.G. Schulz, Age-related cerebral white matter disease (leukoaraiosis): a review. Postgrad. Med. J. 88(1036), 79–87 (2012). https://doi.org/10.1136/postgradmedj-2011-130307

    Article  PubMed  Google Scholar 

  46. D. Fuhrmann, D. Nesbitt, M. Shafto, J.B. Rowe, D. Price, A. Gadie, C. CAN, R.A. Kievit, Strong and specifific associations between cardiovascular risk factors and white matter micro- and macrostructure in healthy aging. Neurobiol. Aging 74, 46–55 (2019). https://doi.org/10.1016/j.neurobiolaging.2018.10.005

    Article  PubMed  PubMed Central  Google Scholar 

  47. C. Annweiler, T. Annweiler, R. Bartha, F.R. Herrmann, R. Camicioli, O. Beauchet, Vitamin D and white matter abnormalities in older adults: a cross-sectional neuroimaging study. Eur. J. Neurol. 21(12), 1436–e95 (2014). https://doi.org/10.1111/ene.12511

    Article  CAS  PubMed  Google Scholar 

  48. O. Godin, C. Tzourio, P. Maillard, B. Mazoyer, C. Dufouil, Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: the Three-City (3C)-Dijon Magnetic Resonance Imaging Study. Circulation 123(3), 266–273 (2011). https://doi.org/10.1161/CIRCULATIONAHA.110.961052

    Article  PubMed  Google Scholar 

  49. M.R. Caunca, M. Simonetto, Y.K. Cheung, N. Alperin, S.H. Lee, M.S.V. Elkind, R.L. Sacco, T. Rundek, Diastolic blood pressure is associated with regional white matter lesion load: the Northern Manhattan Study. Stroke. 51(2), 372–378 (2020). https://doi.org/10.1161/STROKEAHA.119.025139

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

National Health Committee Key Laboratory of Hypertension Clinical Research.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. carried out statistical analysis, prepared original manuscript, and revised the submission. N.L. conceived and designed the present study. Y.L., M.W., M.H., Q.Z., X.Y., and Q.L. participated in controlling the quality of cases. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Nanfang Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

Yes

Ethics approval

The study was approved by the Ethics Committee of People’s Hospital of Xinjiang Uygur Autonomous Region. Due to retrospective nature of the study and use of anonymized data, we waived need for informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Li, N., Liu, Y. et al. Plasma aldosterone concentration is associated with white matter lesions in patients with primary aldosteronism. Endocrine 75, 889–898 (2022). https://doi.org/10.1007/s12020-021-02920-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02920-w

Keywords

Navigation