Skip to main content

Advertisement

Log in

Quantitative proteomics revealed the molecular characteristics of distinct types of granulated somatotroph adenomas

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Somatotroph adenomas are obviously heterogeneous in clinical characteristics, imaging performance, pathological diagnosis and therapeutic effect. The heterogeneity of the tumors, especially for SG and DG type adenomas, have attracted great interest in identifying the specific pathological markers and therapeutic targets of them. However, previous analyses of the molecular characteristics of the subtypes of somatotroph adenomas were performed at genomic and transcriptome level. The proteomic differences between the two subtypes of somatotroph adenomas are still unknown.

Methods

Tumor samples were surgically removed from 10 sporadic pituitary somatotroph adenoma patients and grouped according to the pathological type. Tandem mass tag (TMT)-based quantitative proteomic analysis was employed to analyze the proteomic differences between SG and DG tumors.

Results

In total, 228 differentially expressed proteins were identified between SG adenomas and DG adenomas. They were enriched mainly in extracellular matrix (ECM)-receptor interaction, leukocyte transendothelial migration, arrhythmogenic right ventricular cardiomyopathy and DNA replication pathways. Protein-protein interaction (PPI) network analysis indicated that Cadherin-1 and Catenin beta-1 were the most important key proteins in the differences between SG and DG adenomas. Immunohistochemistry (IHC) confirmed the expression levels of the key proteins.

Conclusions

This study provides large-scale proteome molecular characteristics of distinct granulation subtypes of somatotroph adenomas. Compared with DG adenomas, The differential protein of SG adenomas mostly enrich in invasive and proliferative functions and pathways at the proteomic level. Cadherin-1 and Catenin beta-1 play key roles in the different biological characteristics of the two tumor subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Capatina, J.A. Wass, 60 years of neuroendocrinology: acromegaly. J. Endocrinol. 226(2), T141–160 (2015). https://doi.org/10.1530/joe-15-0109

    Article  CAS  PubMed  Google Scholar 

  2. S. Melmed, Acromegaly pathogenesis and treatment. J. Clin. Invest. 119(11), 3189–3202 (2009). https://doi.org/10.1172/jci39375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O.M. Dekkers, N.R. Biermasz, A.M. Pereira, J.A. Romijn, J.P. Vandenbroucke, Mortality in acromegaly: a metaanalysis. J. Clin. Endocrinol. Metab. 93(1), 61–67 (2008). https://doi.org/10.1210/jc.2007-1191

    Article  CAS  PubMed  Google Scholar 

  4. A. Ben-Shlomo, S. Melmed, Acromegaly. Endocrinol. Metab. Clin. North Am. 37(1), 101–122 (2008). https://doi.org/10.1016/j.ecl.2007.10.002. viii

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S.L. Asa, W. Kucharczyk, S. Ezzat, Pituitary acromegaly: not one disease. Endocr. Relat. Cancer 24(3), C1–c4 (2017). https://doi.org/10.1530/erc-16-0496

    Article  PubMed  Google Scholar 

  6. K. Kiseljak-Vassiliades, N.E. Carlson, M.T. Borges, B.K. Kleinschmidt-DeMasters, K.O. Lillehei, J.M. Kerr, M.E. Wierman, Growth hormone tumor histological subtypes predict response to surgical and medical therapy. Endocrine 49(1), 231–241 (2015). https://doi.org/10.1007/s12020-014-0383-y

    Article  CAS  PubMed  Google Scholar 

  7. B. Mayr, R. Buslei, M. Theodoropoulou, G.K. Stalla, M. Buchfelder, C. Schöfl, Molecular and functional properties of densely and sparsely granulated GH-producing pituitary adenomas. Eur. J. Endocrinol. 169(4), 391–400 (2013). https://doi.org/10.1530/eje-13-0134

    Article  CAS  PubMed  Google Scholar 

  8. S.L. Asa, S. Ezzat, The pathogenesis of pituitary tumors. Annu. Rev. Pathol. 4, 97–126 (2009). https://doi.org/10.1146/annurev.pathol.4.110807.092259

    Article  CAS  PubMed  Google Scholar 

  9. I. Potorac, P. Petrossians, A.F. Daly, O. Alexopoulou, S. Borot, M. Sahnoun-Fathallah, F. Castinetti, F. Devuyst, M.L. Jaffrain-Rea, C. Briet, F. Luca, M. Lapoirie, F. Zoicas, I. Simoneau, A.M. Diallo, A. Muhammad, F. Kelestimur, E. Nazzari, R.G. Centeno, S.M. Webb, M.L. Nunes, V. Hana, V. Pascal-Vigneron, I. Ilovayskaya, F. Nasybullina, S. Achir, D. Ferone, S.J. Neggers, B. Delemer, J.M. Petit, C. Schöfl, G. Raverot, B. Goichot, P. Rodien, B. Corvilain, T. Brue, F. Schillo, L. Tshibanda, D. Maiter, J.F. Bonneville, A. Beckers, T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocr. Relat. Cancer 23(11), 871–881 (2016). https://doi.org/10.1530/erc-16-0356

    Article  PubMed  Google Scholar 

  10. S. Melmed, Pathogenesis of pituitary tumors. Nat. Rev. Endocrinol. 7(5), 257–266 (2011). https://doi.org/10.1038/nrendo.2011.40

    Article  CAS  PubMed  Google Scholar 

  11. A. Obari, T. Sano, K. Ohyama, E. Kudo, Z.R. Qian, A. Yoneda, N. Rayhan, M. Mustafizur Rahman, S. Yamada, Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr. Pathol. 19(2), 82–91 (2008). https://doi.org/10.1007/s12022-008-9029-z

    Article  PubMed  Google Scholar 

  12. F. Langlois, R. Woltjer, J.S. Cetas, M. Fleseriu, Silent somatotroph pituitary adenomas: an update. Pituitary 21(2), 194–202 (2018). https://doi.org/10.1007/s11102-017-0858-y

    Article  PubMed  Google Scholar 

  13. M.H. Schernthaner-Reiter, G. Trivellin, C.A. Stratakis, MEN1, MEN4, and carney complex: pathology and molecular genetics. Neuroendocrinology 103(1), 18–31 (2016). https://doi.org/10.1159/000371819

    Article  CAS  PubMed  Google Scholar 

  14. J. Trouillas, F. Labat-Moleur, N. Sturm, M. Kujas, M.F. Heymann, D. Figarella-Branger, M. Patey, M. Mazucca, E. Decullier, B. Vergès, O. Chabre, A. Calender, Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case-control study in a series of 77 patients versus 2509 non-MEN1 patients. Am. J. Surg. Pathol. 32(4), 534–543 (2008). https://doi.org/10.1097/PAS.0b013e31815ade45

    Article  PubMed  Google Scholar 

  15. D. Iacovazzo, R. Caswell, B. Bunce, S. Jose, B. Yuan, L.C. Hernández-Ramírez, S. Kapur, F. Caimari, J. Evanson, F. Ferraù, M.N. Dang, P. Gabrovska, S.J. Larkin, O. Ansorge, C. Rodd, M.L. Vance, C. Ramírez-Renteria, M. Mercado, A.P. Goldstone, M. Buchfelder, C.P. Burren, A. Gurlek, P. Dutta, C.S. Choong, T. Cheetham, G. Trivellin, C.A. Stratakis, M.B. Lopes, A.B. Grossman, J. Trouillas, J.R. Lupski, S. Ellard, J.R. Sampson, F. Roncaroli, M. Korbonits, Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. Acta Neuropathol. Commun. 4(1), 56 (2016). https://doi.org/10.1186/s40478-016-0328-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Salenave, A.M. Boyce, M.T. Collins, P. Chanson, Acromegaly and McCune-Albright syndrome. J. Clin. Endocrinol. Metab. 99(6), 1955–1969 (2014). https://doi.org/10.1210/jc.2013-3826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eva, H, Kalman, K, Pathology of acromegaly. Neuroendocrinology (2006).

  18. Y. Bakhtiar, H. Hirano, K. Arita, S. Yunoue, S. Fujio, A. Tominaga, T. Sakoguchi, K. Sugiyama, K. Kurisu, J. Yasufuku-Takano, K. Takano, Relationship between cytokeratin staining patterns and clinico-pathological features in somatotropinomae. Eur. J. Endocrinol. 163(4), 531–539 (2010). https://doi.org/10.1530/eje-10-0586

    Article  CAS  PubMed  Google Scholar 

  19. O. Mete, M.B. Lopes, Overview of the 2017 WHO classification of pituitary tumors. Endocr. Pathol. 28(3), 228–243 (2017). https://doi.org/10.1007/s12022-017-9498-z

    Article  CAS  PubMed  Google Scholar 

  20. S.L. Fougner, O. Casar-Borota, A. Heck, J.P. Berg, J. Bollerslev, Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin. Endocrinol. 76(1), 96–102 (2012). https://doi.org/10.1111/j.1365-2265.2011.04163.x

    Article  CAS  Google Scholar 

  21. K. Kiseljak-Vassiliades, T.S. Mills, Y. Zhang, M. Xu, K.O. Lillehei, B.K. Kleinschmidt-DeMasters, M.E. Wierman, Elucidating the role of the desmosome protein p53 apoptosis effector related to PMP-22 in growth hormone tumors. Endocrinology 158(5), 1450–1460 (2017). https://doi.org/10.1210/en.2016-1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. T. Xie, Y. Tang, R. Luo, X. Zhang, S. Wu, Y. Gu, T. Liu, F. Hu, GPR64 promotes cAMP pathway in tumor aggressiveness in sparsely granulated growth hormone cell adenomas. Endocrine (2020). https://doi.org/10.1007/s12020-020-02263-y

  23. P. Kahn, From genome to proteome: looking at a cell’s proteins. Science 270(5235), 369–370 (1995). https://doi.org/10.1126/science.270.5235.369

    Article  CAS  PubMed  Google Scholar 

  24. J. Zecha, S. Satpathy, T. Kanashova, S.C. Avanessian, M.H. Kane, K.R. Clauser, P. Mertins, S.A. Carr, B. Kuster, TMT labeling for the masses: a robust and cost-efficient, in-solution labeling approach. Mol. Cell. Proteom. 18(7), 1468–1478 (2019). https://doi.org/10.1074/mcp.TIR119.001385

    Article  CAS  Google Scholar 

  25. N. Stallard, Practical statistics for medical research by D. G. Altman. J. R. Stat. Soc. 49(4), 179–361 (2000).

  26. S.C.Y. Leung, T.O. Nielsen, L.A. Zabaglo, I. Arun, S.S. Badve, A.L. Bane, J.M.S. Bartlett, S. Borgquist, M.C. Chang, A. Dodson, A. Ehinger, S. Fineberg, C.M. Focke, D. Gao, A.M. Gown, C. Gutierrez, J.C. Hugh, Z. Kos, A.V. Laenkholm, M.G. Mastropasqua, T. Moriya, S. Nofech-Mozes, C.K. Osborne, F.M. Penault-Llorca, T. Piper, T. Sakatani, R. Salgado, J. Starczynski, T. Sugie, B. van der Vegt, G. Viale, D.F. Hayes, L.M. McShane, M. Dowsett, Analytical validation of a standardised scoring protocol for Ki67 immunohistochemistry on breast cancer excision whole sections: an international multicentre collaboration. Histopathology 75(2), 225–235 (2019). https://doi.org/10.1111/his.13880

    Article  PubMed  Google Scholar 

  27. M. Li, X. Wu, J. Wang, Y. Pan, Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinform. 13, 109 (2012). https://doi.org/10.1186/1471-2105-13-109

    Article  CAS  Google Scholar 

  28. G.D. Bader, C.W.V. Hogue, An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4, 2 (2003)

    Article  Google Scholar 

  29. L. Katznelson, E.R. Laws Jr, S. Melmed, M.E. Molitch, M.H. Murad, A. Utz, J.A. Wass, Acromegaly: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 99(11), 3933–3951 (2014). https://doi.org/10.1210/jc.2014-2700

    Article  CAS  PubMed  Google Scholar 

  30. T. Xie, T. Liu, X. Zhang, L. Chen, R. Luo, W. Sun, F. Hu, Y. Yu, Y. Gu, Z. Lu, Time to revive the value of the pseudocapsule in endoscopic endonasal transsphenoidal surgery for growth hormone adenomas. World Neurosurg. 89, 65–71 (2016). https://doi.org/10.1016/j.wneu.2016.01.036

    Article  PubMed  Google Scholar 

  31. A. Giustina, G. Barkhoudarian, A. Beckers, A. Ben-Shlomo, N. Biermasz, B. Biller, C. Boguszewski, M. Bolanowski, J. Bollerslev, V. Bonert, M. Bronstein, M. Buchfelder, F. Casanueva, P. Chanson, D. Clemmons, M. Fleseriu, A. Formenti, P. Freda, M. Gadelha, E. Geer, M. Gurnell, A. Heaney, K. Ho, A. Ioachimescu, S. Lamberts, E. Laws, M. Losa, P. Maffei, A. Mamelak, M. Mercado, M. Molitch, P. Mortini, A. Pereira, S. Petersenn, K. Post, M. Puig-Domingo, R. Salvatori, S. Samson, I. Shimon, C. Strasburger, B. Swearingen, P. Trainer, M. Vance, J. Wass, M. Wierman, K. Yuen, M. Zatelli, S. Melmed, Multidisciplinary management of acromegaly: a consensus. Rev. Endocr. Metab. Disord. 21(4), 667–678 (2020). https://doi.org/10.1007/s11154-020-09588-z

    Article  PubMed  PubMed Central  Google Scholar 

  32. A.M. Abu Dabrh, K. Mohammed, N. Asi, W.H. Farah, Z. Wang, M.H. Farah, L.J. Prokop, L. Katznelson, M.H. Murad, Surgical interventions and medical treatments in treatment-naive patients with acromegaly: systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 99(11), 4003–4014 (2014). https://doi.org/10.1210/jc.2014-2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Petersenn, Management of aggressive pituitary tumors - a 2019 update. Horm. Metab. Res. 51(12), 755–764 (2019). https://doi.org/10.1055/a-1060-1883

    Article  CAS  PubMed  Google Scholar 

  34. A. Colao, R.S. Auriemma, G. Lombardi, R. Pivonello, Resistance to somatostatin analogs in acromegaly. Endocr. Rev. 32(2), 247–271 (2011). https://doi.org/10.1210/er.2010-0002

    Article  CAS  PubMed  Google Scholar 

  35. S. Larkin, R. Reddy, N. Karavitaki, S. Cudlip, J. Wass, O. Ansorge, Granulation pattern, but not GSP or GHR mutation, is associated with clinical characteristics in somatostatin-naive patients with somatotroph adenomas. Eur. J. Endocrinol. 168(4), 491–499 (2013). https://doi.org/10.1530/eje-12-0864

    Article  CAS  PubMed  Google Scholar 

  36. E. Horvath, K. Kovacs, Pathology of acromegaly. Neuroendocrinology 83(3-4), 161–165 (2006). https://doi.org/10.1159/000095524

    Article  CAS  PubMed  Google Scholar 

  37. S. Murphy, P. Dowling, K. Ohlendieck, Comparative skeletal muscle proteomics using two-dimensional gel electrophoresis. Proteomes 4(3) (2016). https://doi.org/10.3390/proteomes4030027

  38. L.E. Scott, S.H. Weinberg, C.A. Lemmon, Mechanochemical signaling of the extracellular matrix in epithelial-mesenchymal transition. Front Cell Dev. Biol. 7, 135 (2019). https://doi.org/10.3389/fcell.2019.00135

    Article  PubMed  PubMed Central  Google Scholar 

  39. D.I. Bellovin, R.C. Bates, A. Muzikansky, D.L. Rimm, A.M. Mercurio, Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res. 65(23), 10938–10945 (2005). https://doi.org/10.1158/0008-5472.Can-05-1947

    Article  CAS  PubMed  Google Scholar 

  40. F.X. Bosch, C. Andl, U. Abel, J. Kartenbeck, E-cadherin is a selective and strongly dominant prognostic factor in squamous cell carcinoma: a comparison of E-cadherin with desmosomal components. Int. J. Cancer 114(5), 779–790 (2005). https://doi.org/10.1002/ijc.20782

    Article  CAS  PubMed  Google Scholar 

  41. W. Yu, L. Yang, T. Li, Y. Zhang, Cadherin signaling in cancer: its functions and role as a therapeutic target. Front. Oncol. 9, 989 (2019). https://doi.org/10.3389/fonc.2019.00989

    Article  PubMed  PubMed Central  Google Scholar 

  42. M. Takeichi, Multiple functions of α-catenin beyond cell adhesion regulation. Curr. Opin. Cell Biol. 54, 24–29 (2018). https://doi.org/10.1016/j.ceb.2018.02.014

    Article  CAS  PubMed  Google Scholar 

  43. P.D. McCrea, C.J. Gottardi, Beyond β-catenin: prospects for a larger catenin network in the nucleus. Nat. Rev. Mol. Cell Biol. 17(1), 55–64 (2016). https://doi.org/10.1038/nrm.2015.3

    Article  CAS  PubMed  Google Scholar 

  44. I.S. Gul, P. Hulpiau, Y. Saeys, F. van Roy, Evolution and diversity of cadherins and catenins. Exp. Cell Res. 358(1), 3–9 (2017). https://doi.org/10.1016/j.yexcr.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  45. P.D. McCrea, D. Gu, The catenin family at a glance. J. Cell Sci. 123(Pt 5), 637–642 (2010). https://doi.org/10.1242/jcs.039842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. N. Ishiyama, R. Sarpal, M.N. Wood, S.K. Barrick, T. Nishikawa, H. Hayashi, A.B. Kobb, A.S. Flozak, A. Yemelyanov, R. Fernandez-Gonzalez, S. Yonemura, D.E. Leckband, C.J. Gottardi, U. Tepass, M. Ikura, Force-dependent allostery of the α-catenin actin-binding domain controls adherens junction dynamics and functions. Nat. Commun. 9(1), 5121 (2018). https://doi.org/10.1038/s41467-018-07481-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D. Ollech, T. Pflästerer, A. Shellard, C. Zambarda, J.P. Spatz, P. Marcq, R. Mayor, R. Wombacher, E.A. Cavalcanti-Adam, An optochemical tool for light-induced dissociation of adherens junctions to control mechanical coupling between cells. Nat. Commun. 11(1), 472 (2020). https://doi.org/10.1038/s41467-020-14390-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. I. Kaszak, O. Witkowska-Piłaszewicz, Z. Niewiadomska, B. Dworecka-Kaszak, F. Ngosa Toka, P. Jurka, Role of cadherins in cancer—a review. Int. J. Mol. Sci. 21(20) (2020). https://doi.org/10.3390/ijms21207624

  49. G. Berx, F. Van Roy, The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res. 3(5), 289–293 (2001). https://doi.org/10.1186/bcr309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. R. Aamodt, J. Bondi, S.N. Andersen, A. Bakka, G. Bukholm, I.R. Bukholm, The prognostic impact of protein expression of e-cadherin-catenin complexes differs between rectal and colon carcinoma. Gastroenterol. Res. Pract. 2010 (2010). https://doi.org/10.1155/2010/616023

  51. C. Salon, S. Lantuejoul, B. Eymin, S. Gazzeri, C. Brambilla, E. Brambilla, The E-cadherin-beta-catenin complex and its implication in lung cancer progression and prognosis. Future Oncol. 1(5), 649–660 (2005). https://doi.org/10.2217/14796694.1.5.649

    Article  CAS  PubMed  Google Scholar 

  52. N. Chauvet, N. Romanò, A.C. Meunier, E. Galibert, P. Fontanaud, M.N. Mathieu, G. Osterstock, P. Osterstock, E. Baccino, V. Rigau, H. Loiseau, S. Bouillot-Eimer, A. Barlier, P. Mollard, N. Coutry, Combining cadherin expression with molecular markers discriminates invasiveness in growth hormone and prolactin pituitary adenomas. J. Neuroendocrinol. 28(2), 12352 (2016). https://doi.org/10.1111/jne.12352

    Article  CAS  PubMed  Google Scholar 

  53. B. Xu, T. Sano, K. Yoshimoto, S. Yamada, Downregulation of E-cadherin and its undercoat proteins in pituitary growth hormone cell adenomas with prominent fibrous bodies. Endocr. Pathol. 13(4), 341–351 (2002). https://doi.org/10.1385/ep:13:4:341

    Article  CAS  PubMed  Google Scholar 

  54. T. Sano, Q.Z. Rong, N. Kagawa, S. Yamada, Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas. Front. Horm. Res. 32, 127–132 (2004). https://doi.org/10.1159/000079041

    Article  CAS  PubMed  Google Scholar 

  55. R.A. Laskey, M.A. Madine, A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep. 4(1), 26–30 (2003). https://doi.org/10.1038/sj.embor.embor706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. J.M. Bailis, S.L. Forsburg, MCM proteins: DNA damage, mutagenesis and repair. Curr. Opin. Genet. Dev. 14(1), 17–21 (2004). https://doi.org/10.1016/j.gde.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  57. C.U. Köhler, A. Kreuter, M.C. Rozynkowski, T. Rahmel, W. Uhl, A. Tannapfel, W.E. Schmidt, J.J. Meier, Validation of different replication markers for the detection of beta-cell proliferation in human pancreatic tissue. Regul. Pept. 162(1–3), 115–121 (2010). https://doi.org/10.1016/j.regpep.2009.12.021

    Article  CAS  PubMed  Google Scholar 

  58. T. Hallén, D.S. Olsson, C. Hammarstrand, C. Örndal, A. Engvall, O. Ragnarsson, T. Skoglund, G. Johannsson, MCM7 as a marker of postsurgical progression in non-functioning pituitary adenomas. Eur. J. Endocrinol. 184(4), 521–531 (2021). https://doi.org/10.1530/eje-20-1086

    Article  CAS  PubMed  Google Scholar 

  59. A. Coli, S.L. Asa, G. Fadda, D. Scannone, S. Chiloiro, L. De Marinis, L. Lauretti, F.O. Ranelletti, L. Lauriola, Minichromosome maintenance protein 7 as prognostic marker of tumor aggressiveness in pituitary adenoma patients. Eur. J. Endocrinol. 174(3), 307–314 (2016). https://doi.org/10.1530/eje-15-0586

    Article  CAS  PubMed  Google Scholar 

  60. C.M. Dallago, L.M. Barbosa-Coutinho, N.P. Ferreira, R. Meurer, J.F. Pereira-Lima, C. Oliveira Mda, Determination of cell proliferation using Mcm2 antigen and evaluation of apoptosis and TGF-beta1 expression in GH-secreting or clinically nonfunctioning pituitary adenomas. Endocr. Pathol. 21(1), 32–39 (2010). https://doi.org/10.1007/s12022-010-9107-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank and acknowledge all of the participants in the study.

Funding

Foundation of Science and Technology Commission of Shanghai Municipality (19ZR1409800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobiao Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Xie, T., Wu, S. et al. Quantitative proteomics revealed the molecular characteristics of distinct types of granulated somatotroph adenomas. Endocrine 74, 375–386 (2021). https://doi.org/10.1007/s12020-021-02767-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02767-1

Keywords

Navigation