Skip to main content

Advertisement

Log in

Increased testosterone and proinflammatory cytokines in patients with polycystic ovary syndrome correlate with elevated GnRH receptor autoantibody activity assessed by a fluorescence resonance energy transfer-based bioassay

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The recently identified agonistic autoantibodies (AAb) to the gonadotropin-releasing hormone receptor (GnRHR) are a novel investigative and therapeutic target for polycystic ovary syndrome (PCOS). In this study, we used a new cell-based fluorescence resonance energy transfer (FRET) bioassay to analyze serum GnRHR-AAb activity and examine its relationship with testosterone and proinflammatory cytokines in patients with PCOS.

Methods

Serum samples from 33 PCOS patients, 39 non-PCOS ovulatory infertile controls and 30 normal controls were tested for GnRHR-AAb activity and proinflammatory cytokines in a FRET-based bioassay and multiplex bead-based immunoassay, respectively. Correlation was analyzed using the Spearman’s correlation test.

Results

Serum GnRHR-AAb activity was significantly higher in the PCOS patients than for the ovulatory infertile (p < 0.05) and normal (p < 0.01) controls. GnRHR-AAb were positive in 39% of PCOS patients, 10% of ovulatory infertile controls, and 0% of normal controls. PCOS IgG-induced GnRHR activation was specifically blocked by the GnRHR antagonist cetrorelix. Serum levels of proinflammatory cytokines interleukin-2, interleukin-6, interferon-γ, and tumor necrosis factor-α were significantly increased in PCOS patients compared with ovulatory infertile and normal controls (p < 0.01). Correlation analysis demonstrated positive correlations of GnRHR-AAb activity with testosterone and proinflammatory cytokine levels in the PCOS group.

Conclusions

Elevated GnRHR-AAb activity, as assessed by a new FRET assay, is associated with increased testosterone and proinflammatory cytokines in PCOS, suggesting autoimmune activation of GnRHR may contribute to the pathogenesis of this common disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Bozdag, S. Mumusoglu, D. Zengin, E. Karabulut, B.O. Yildiz, The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum. Reprod. 31(12), 2841–2855 (2016). https://doi.org/10.1093/humrep/dew218

    Article  PubMed  Google Scholar 

  2. R. Azziz, E. Carmina, Z. Chen, A. Dunaif, J.S. Laven, R.S. Legro, D. Lizneva, B. Natterson-Horowtiz, H.J. Teede, B.O. Yildiz, Polycystic ovary syndrome. Nat. Rev. Dis. Prim. 2, 16057 (2016). https://doi.org/10.1038/nrdp.2016.57

    Article  PubMed  Google Scholar 

  3. M.O. Goodarzi, D.A. Dumesic, G. Chazenbalk, R. Azziz, Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 7(4), 219–231 (2011). https://doi.org/10.1038/nrendo.2010.217

    Article  CAS  PubMed  Google Scholar 

  4. R.L. Rosenfield, D.A. Ehrmann, The Pathogenesis of Polycystic Ovary Syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev. 37(5), 467–520 (2016). https://doi.org/10.1210/er.2015-1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C.K. Cheng, P.C. Leung, Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and their receptors in humans. Endocr. Rev. 26(2), 283–306 (2005). https://doi.org/10.1210/er.2003-0039

    Article  CAS  PubMed  Google Scholar 

  6. G.A. Stamatiades, U.B. Kaiser, Gonadotropin regulation by pulsatile GnRH: signaling and gene expression. Mol. Cell Endocrinol. 463, 131–141 (2018). https://doi.org/10.1016/j.mce.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  7. R. Tsutsumi, N.J. Webster, GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr. J. 56(6), 729–737 (2009)

    Article  CAS  Google Scholar 

  8. A.V. Roland, S.M. Moenter, Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models. Front. Neuroendocrinol. 35(4), 494–511 (2014). https://doi.org/10.1016/j.yfrne.2014.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. C.M. Burt Solorzano, J.P. Beller, M.Y. Abshire, J.S. Collins, C.R. McCartney, J.C. Marshall, Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids 77(4), 332–337 (2012). https://doi.org/10.1016/j.steroids.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  10. A.E. Taylor, B. McCourt, K.A. Martin, E.J. Anderson, J.M. Adams, D. Schoenfeld, J.E. Hall, Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 82(7), 2248–2256 (1997). https://doi.org/10.1210/jcem.82.7.4105

    Article  CAS  PubMed  Google Scholar 

  11. R. Maggi, A.M. Cariboni, M.M. Marelli, R.M. Moretti, V. Andre, M. Marzagalli, P. Limonta, GnRH and GnRH receptors in the pathophysiology of the human female reproductive system. Hum. Reprod. Update 22(3), 358–381 (2016). https://doi.org/10.1093/humupd/dmv059

    Article  CAS  PubMed  Google Scholar 

  12. R.P. Millar, Z.L. Lu, A.J. Pawson, C.A. Flanagan, K. Morgan, S.R. Maudsley, Gonadotropin-releasing hormone receptors. Endocr. Rev. 25(2), 235–275 (2004). https://doi.org/10.1210/er.2003-0002

    Article  CAS  PubMed  Google Scholar 

  13. C. Meyer, H. Heidecke, Antibodies Against GPCR. Front Biosci. (Landmark Ed.) 23, 2177–2194 (2018)

  14. E.T. van der Westhuizen, C. Valant, P.M. Sexton, A. Christopoulos, Endogenous allosteric modulators of G protein-coupled receptors. J. Pharm. Exp. Ther. 353(2), 246–260 (2015). https://doi.org/10.1124/jpet.114.221606

    Article  CAS  Google Scholar 

  15. D.C. Kem, H. Li, X. Yu, E. Weedin, A.C. Reynolds, E. Forsythe, M. Beel, H. Fischer, B. Hines, Y. Guo, J. Deng, J.T. Liles, Z. Nuss, M. Elkosseifi, C.E. Aston, H.R. Burks, L.B. Craig, The role of GnRH receptor autoantibodies in polycystic ovary syndrome. J. Endocr. Soc. 4(8), bvaa078 (2020). https://doi.org/10.1210/jendso/bvaa078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. G. Wallukat, I. Schimke, Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases. Semin Immunopathol. 36(3), 351–363 (2014). https://doi.org/10.1007/s00281-014-0425-9

    Article  CAS  PubMed  Google Scholar 

  17. G.R. Monteith, G.S. Bird, Techniques: high-throughput measurement of intracellular Ca(2+)—back to basics. Trends Pharm. Sci. 26(4), 218–223 (2005). https://doi.org/10.1016/j.tips.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  18. C. Chambers, F. Smith, C. Williams, S. Marcos, Z.H. Liu, P. Hayter, G. Ciaramella, W. Keighley, P. Gribbon, A. Sewing, Measuring intracellular calcium fluxes in high throughput mode. Comb. Chem. High. Throughput Screen 6(4), 355–362 (2003). https://doi.org/10.2174/138620703106298446

    Article  CAS  PubMed  Google Scholar 

  19. F. Gonzalez, Inflammation in Polycystic Ovary Syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids 77(4), 300–305 (2012). https://doi.org/10.1016/j.steroids.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  20. C.H. Kim, J.W. Ahn, R.M. You, S.H. Kim, H.D. Chae, B.M. Kang, Pioglitazone treatment decreases follicular fluid levels of tumor necrosis factor-alpha and interleukin-6 in patients with polycystic ovary syndrome. Clin. Exp. Reprod. Med. 38(2), 98–102 (2011). https://doi.org/10.5653/cerm.2011.38.2.98

    Article  PubMed  PubMed Central  Google Scholar 

  21. G. Amato, M. Conte, G. Mazziotti, E. Lalli, G. Vitolo, A.T. Tucker, A. Bellastella, C. Carella, A. Izzo, Serum and follicular fluid cytokines in polycystic ovary syndrome during stimulated cycles. Obstet. Gynecol. 101(6), 1177–1182 (2003). https://doi.org/10.1016/s0029-7844(03)00233-3

    Article  CAS  PubMed  Google Scholar 

  22. L. Qin, W. Xu, X. Li, W. Meng, L. Hu, Z. Luo, Y. Wang, S. Luo, S. Li, Differential expression profile of immunological cytokines in local ovary in patients with polycystic ovarian syndrome: analysis by flow cytometry. Eur. J. Obstet. Gynecol. Reprod. Biol. 197, 136–141 (2016). https://doi.org/10.1016/j.ejogrb.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  23. P. Gong, B. Shi, J. Wang, P. Cao, Z. Diao, Y. Wang, Y. Hu, S. Li, Association between Th1/Th2 immune imbalance and obesity in women with or without polycystic ovary syndrome. Gynecol. Endocrinol. 34(8), 709–714 (2018). https://doi.org/10.1080/09513590.2018.1428301

    Article  CAS  PubMed  Google Scholar 

  24. K. Lundstrom, Present and future approaches to screening of G-protein-coupled receptors. Future Med. Chem. 5(5), 523–538 (2013). https://doi.org/10.4155/fmc.13.9

    Article  CAS  PubMed  Google Scholar 

  25. W. Thomsen, J. Frazer, D. Unett, Functional assays for screening GPCR targets. Curr. Opin. Biotechnol. 16(6), 655–665 (2005). https://doi.org/10.1016/j.copbio.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  26. I.F. Stein, M.L. Leventhal, Amenorrhea associated with bilateral polycystic ovaries. Am. J. Obstet. Gynecol. 29, 181–191 (1935)

    Article  Google Scholar 

  27. J. Petrikova, I. Lazurova, S. Yehuda, Polycystic ovary syndrome and autoimmunity. Eur. J. Intern. Med. 21(5), 369–371 (2010). https://doi.org/10.1016/j.ejim.2010.06.008

    Article  PubMed  Google Scholar 

  28. D. Glintborg, M. Andersen, Medical comorbidity in polycystic ovary syndrome with special focus on cardiometabolic, autoimmune, hepatic and cancer diseases: an updated review. Curr. Opin. Obstet. Gynecol. 29(6), 390–396 (2017). https://doi.org/10.1097/GCO.0000000000000410

    Article  PubMed  Google Scholar 

  29. C.C. Whitacre, Sex differences in autoimmune disease. Nat. Immunol. 2(9), 777–780 (2001). https://doi.org/10.1038/ni0901-777

    Article  CAS  PubMed  Google Scholar 

  30. S.T. Ngo, F.J. Steyn, P.A. McCombe, Gender differences in autoimmune disease. Front. Neuroendocrinol. 35(3), 347–369 (2014). https://doi.org/10.1016/j.yfrne.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  31. D. Fairweather, S. Frisancho-Kiss, N.R. Rose, Sex differences in autoimmune disease from a pathological perspective. Am. J. Pathol. 173(3), 600–609 (2008). https://doi.org/10.2353/ajpath.2008.071008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. N.P. Becker, P. Goettel, J. Mueller, G. Wallukat, I. Schimke, Functional autoantibody diseases: basics and treatment related to cardiomyopathies. Front. Biosci. (Landmark Ed.) 24, 48–95 (2019)

    Article  Google Scholar 

  33. S. Shorakae, H. Teede, B. de Courten, G. Lambert, J. Boyle, L.J. Moran, The emerging role of chronic low-grade inflammation in the pathophysiology of Polycystic Ovary Syndrome. Semin. Reprod. Med. 33(4), 257–269 (2015). https://doi.org/10.1055/s-0035-1556568

    Article  CAS  PubMed  Google Scholar 

  34. M. Ojeda-Ojeda, M. Murri, M. Insenser, H.F. Escobar-Morreale, Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS). Curr. Pharm. Des. 19(32), 5775–5791 (2013). https://doi.org/10.2174/1381612811319320012

    Article  CAS  PubMed  Google Scholar 

  35. K. Ebejer, J. Calleja-Agius, The role of cytokines in polycystic ovarian syndrome. Gynecol. Endocrinol. 29(6), 536–540 (2013). https://doi.org/10.3109/09513590.2012.760195

    Article  CAS  PubMed  Google Scholar 

  36. E. Deligeoroglou, N. Vrachnis, N. Athanasopoulos, Z. Iliodromiti, S. Sifakis, S. Iliodromiti, C. Siristatidis, G. Creatsas, Mediators of chronic inflammation in polycystic ovarian syndrome. Gynecol. Endocrinol. 28(12), 974–978 (2012). https://doi.org/10.3109/09513590.2012.683082

    Article  CAS  PubMed  Google Scholar 

  37. P.M. Spritzer, S.B. Lecke, F. Satler, D.M. Morsch, Adipose tissue dysfunction, adipokines, and low-grade chronic inflammation in polycystic ovary syndrome. Reproduction 149(5), R219–227 (2015). https://doi.org/10.1530/REP-14-0435

    Article  CAS  PubMed  Google Scholar 

  38. N. Sung, M.D. Salazar Garcia, S. Dambaeva, K.D. Beaman, A. Gilman-Sachs, J. Kwak-Kim, Gonadotropin-releasing hormone analogues lead to pro-inflammatory changes in T lymphocytes. Am. J. Reprod. Immunol. 76(1), 50–58 (2016). https://doi.org/10.1111/aji.12522

    Article  CAS  PubMed  Google Scholar 

  39. V.D. Dixit, H. Yang, V. Udhayakumar, R. Sridaran, Gonadotropin-releasing hormone alters the T helper cytokine balance in the pregnant rat. Biol. Reprod. 68(6), 2215–2221 (2003). https://doi.org/10.1095/biolreprod.102.012211

    Article  CAS  PubMed  Google Scholar 

  40. H.F. Chen, E.B. Jeung, M. Stephenson, P.C. Leung, Human peripheral blood mononuclear cells express gonadotropin-releasing hormone (GnRH), GnRH receptor, and interleukin-2 receptor gamma-chain messenger ribonucleic acids that are regulated by GnRH in vitro. J. Clin. Endocrinol. Metab. 84(2), 743–750 (1999). https://doi.org/10.1210/jcem.84.2.5440

    Article  CAS  PubMed  Google Scholar 

  41. D. Dragun, A. Philippe, R. Catar, B. Hegner, Autoimmune mediated G-protein receptor activation in cardiovascular and renal pathologies. Thromb. Haemost. 101(4), 643–648 (2009)

    Article  CAS  Google Scholar 

  42. I. Ferrari, M.J. Levin, G. Wallukat, R. Elies, D. Lebesgue, P. Chiale, M. Elizari, M. Rosenbaum, J. Hoebeke, Molecular mimicry between the immunodominant ribosomal protein P0 of Trypanosoma cruzi and a functional epitope on the human beta 1-adrenergic receptor. J. Exp. Med. 182(1), 59–65 (1995). https://doi.org/10.1084/jem.182.1.59

    Article  CAS  PubMed  Google Scholar 

  43. F. Herse, S. Verlohren, K. Wenzel, J. Pape, D.N. Muller, S. Modrow, G. Wallukat, F.C. Luft, C.W. Redman, R. Dechend, Prevalence of agonistic autoantibodies against the angiotensin II type 1 receptor and soluble fms-like tyrosine kinase 1 in a gestational age-matched case study. Hypertension 53(2), 393–398 (2009). https://doi.org/10.1161/HYPERTENSIONAHA.108.124115

    Article  CAS  PubMed  Google Scholar 

  44. N.R. Rose, C. Bona, Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol. Today 14(9), 426–430 (1993). https://doi.org/10.1016/0167-5699(93)90244-F

    Article  CAS  PubMed  Google Scholar 

  45. E. Witebsky, N.R. Rose, K. Terplan, J.R. Paine, R.W. Egan, Chronic thyroiditis and autoimmunization. J. Am. Med. Assoc. 164(13), 1439–1447 (1957)

    Article  CAS  Google Scholar 

  46. H. Li, Y. Guo, G. Zhang, J. Deng, H. Fischer, L.B. Craig, X. Yu, D.C. Kem, Gonadotrophin-releasing hormone receptor autoantibodies induce polycystic ovary syndrome-like features in a rat model. Exp. Physiol. 106(4), 902–912 (2021). https://doi.org/10.1113/EP089109

    Article  CAS  PubMed  Google Scholar 

  47. H. Li, D.C. Kem, L. Zhang, B. Huang, C. Liles, A. Benbrook, H. Gali, V. Veitla, B.J. Scherlag, M.W. Cunningham, X. Yu, Novel retro-inverso peptide inhibitor reverses angiotensin receptor autoantibody-induced Hypertension Rabbit. Hypertension 65(4), 793–799 (2015). https://doi.org/10.1161/HYPERTENSIONAHA.114.05037

    Article  CAS  PubMed  Google Scholar 

  48. H. Li, L. Zhang, B. Huang, V. Veitla, B.J. Scherlag, M.W. Cunningham, C.E. Aston, D.C. Kem, X. Yu, A peptidomimetic inhibitor suppresses the inducibility of beta1-adrenergic autoantibody-mediated cardiac arrhythmias in the rabbit. J. Interv. Card. Electrophysiol. 44(3), 205–212 (2015). https://doi.org/10.1007/s10840-015-0063-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions of our colleague Dr. David Kem, who recently passed away. He pioneered the concept of GnRH receptor autoimmunity as a potential pathogenic mechanism for polycystic ovary syndrome.

Funding

This work was supported in part by funding from the National Heart, Lung, and Blood Institute (R01HL128393), Oklahoma Center for the Advancement of Science and Technology (OCAST), University of Oklahoma College of Medicine Alumni Association Research Fund, an Exploratory Grant award from Harold Hamm Diabetes Center at the University of Oklahoma, and individual grants from the Oklahoma University Foundation Webster Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xichun Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was approved by the University of Oklahoma Health Sciences Center Institutional Review Board and conforms to the US Federal Policy for the Protection of Human Subjects.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Guo, Y., Deng, J. et al. Increased testosterone and proinflammatory cytokines in patients with polycystic ovary syndrome correlate with elevated GnRH receptor autoantibody activity assessed by a fluorescence resonance energy transfer-based bioassay. Endocrine 74, 163–171 (2021). https://doi.org/10.1007/s12020-021-02761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02761-7

Keywords

Navigation