Skip to main content

Advertisement

Log in

New genetics in congenital hypothyroidism

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Introduction

Congenital hypothyroidism (CH) is the most frequent neonatal endocrine disorder and one of the most common preventable forms of mental retardation worldwide. CH is due to thyroid development or thyroid function defects (primary) or may be of hypothalamic-pituitary origin (central). Primary CH is caused essentially by abnormal thyroid gland morphogenesis (thyroid dysgenesis, TD) or defective thyroid hormone synthesis (dyshormonogenesis, DH). TD accounts for about 65% of CH, however a genetic cause is identified in less than 5% of patients.

Purpose

The pathogenesis of CH is largely unknown and may include the contribution of individual and environmental factors. During the last years, detailed phenotypic description of patients, next-generation sequence technologies and use of animal models allowed the discovery of novel candidate genes in thyroid development, function and pathways.

Results and conclusion

We provide an overview of recent genetic causes of primary and central CH. In addition, mode of inheritance and the oligogenic model of CH are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Y. Barry, C. Bonaldi, V. Goulet, R. Coutant, J. Léger, A.C. Paty, D. Delmas, D. Cheillan, M. Roussey, Increased incidence of congenital hypothyroidism in France from 1982 to 2012: a nationwide multicenter analysis. Ann. Epidemiol. 26(2), 100–105 (2016)

    PubMed  Google Scholar 

  2. J. Deladoëy, J. Ruel, Y. Giguère, G. Van Vliet, Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Québec. J. Clin. Endocrinol. Metab. 96(8), 2422–2429 (2011)

    PubMed  Google Scholar 

  3. N. Schoenmakers, V.K. Chatterjee, Thyroid gland: TSHR mutations and subclinical congenital hypothyroidism. Nat. Rev. Mol. Cell Biol. 11(5), 258–259 (2015)

    CAS  Google Scholar 

  4. A. Stoupa, D. Kariyawasam, A. Carré, M. Polak, Update of thyroid developmental genes. Endocrinol. Metab. Clin. N. Am. 45(2), 243–254 (2016)

    Google Scholar 

  5. L.P. Fernández, A. López-Márquez, P. Santisteban, Thyroid transcription factors in development, differentiation and disease. Nat. Rev. Mol. Cell Biol. 11(1), 29–42 (2015)

    Google Scholar 

  6. A. Carré, A. Stoupa, D. Kariyawasam, M. Gueriouz, C. Ramond, T. Monus, J. Léger, S. Gaujoux, F. Sebag, N. Glaser, D. Zenaty, P. Nitschke, C. Bole-Feysot, L. Hubert, S. Lyonnet, R. Scharfmann, A. Munnich, C. Besmond, W. Taylor, M. Polak, Mutations in BOREALIN cause thyroid dysgenesis. Hum. Mol. Genet. 26(3), 599–610 (2017)

    PubMed  Google Scholar 

  7. A. Méneret, E.A. Franz, O. Trouillard, T.C. Oliver, Y. Zagar, S.P. Robertson, Q. Welniarz, R.J.M. Gardner, C. Gallea, M. Srour, C. Depienne, C.L. Jasoni, C. Dubacq, F. Riant, J.C. Lamy, M.P. Morel, R. Guérois, J. Andreani, C. Fouquet, M. Doulazmi, M. Vidailhet, G.A. Rouleau, A. Brice, A. Chédotal, I. Dusart, E. Roze, D. Markie, Mutations in the netrin-1 gene cause congenital mirror movements. J. Clin. Investig. 127(11), 3923–3936 (2017)

    PubMed  Google Scholar 

  8. R. Opitz, M.P. Hitz, I. Vandernoot, A. Trubiroha, R. Abu-Khudir, M. Samuels, V. Désilets, S. Costagliola, G. Andelfinger, J. Deladoëy, Functional zebrafish studies based on human genotyping point to netrin-1 as a link between aberrant cardiovascular development and thyroid dysgenesis. Endocrinology 156(1), 377–388 (2015)

    PubMed  Google Scholar 

  9. F. Marelli, L. Persani, Role of Jagged1-Notch pathway in thyroid development. J. Endocrinol. Investig. 41(1), 75–81 (2018)

    CAS  Google Scholar 

  10. T. de Filippis, F. Marelli, G. Nebbia, P. Porazzi, S. Corbetta, L. Fugazzola, R. Gastaldi, M.C. Vigone, R. Biffanti, D. Frizziero, L. Mandarà, P. Prontera, M. Salerno, M. Maghnie, N. Tiso, G. Radetti, G. Weber, L. Persani, JAG1 loss-of-function variations as a novel predisposing event in the pathogenesis of congenital thyroid defects. J. Clin. Endocrinol. Metab. 101(3), 861–870 (2016)

    PubMed  Google Scholar 

  11. A. Stoupa, F. Adam, D. Kariyawasam, C. Strassel, S. Gawade, G. Szinnai, A. Kauskot, D. Lasne, C. Janke, K. Natarajan, A. Schmitt, C. Bole-Feysot, P. Nitschke, J. Léger, F. Jabot-Hanin, F. Tores, A. Michel, A. Munnich, C. Besmond, R. Scharfmann, F. Lanza, D. Borgel, M. Polak, A. Carré, TUBB1 mutations cause thyroid dysgenesis associated with abnormal platelet physiology. EMBO Mol. Med. 10(12), e9569 (2018)

    PubMed  PubMed Central  Google Scholar 

  12. D. Kariyawasam, L. Rachdi, A. Carré, M. Martin, M. Houlier, N. Janel, J.M. Delabar, R. Scharfmann, M. Polak, DYRK1A B.A.C. transgenic mouse: a new model of thyroid dysgenesis in Down syndrome. Endocrinology 156(3), 171–180 (2015)

    Google Scholar 

  13. G. Szinnai, Clinical genetics of congenital hypothyroidism. Endocr. Dev. 26, 60–78 (2014)

    PubMed  Google Scholar 

  14. M. Zou, A.S. Alzahrani, A. Al-Odaib, M.A. Alqahtani, O. Babiker, R.A. Al-Rijjal, H.A. BinEssa, W.E. Kattan, A.F. Al-Enezi, A. Al Qarni, M.S.A. Al-Faham, E.Y. Baitei, A. Alsagheir, B.F. Meyer, Y. Shi, Molecular analysis of congenital hypothyroidism in Saudi Arabia: SLC26A7 mutation is a novel defect in thyroid dyshormonogenesis. J. Clin. Endocrinol. Metab. 103(5), 1889–1898 (2018)

    PubMed  Google Scholar 

  15. H. Cangul, X.H. Liao, E. Schoenmakers, J. Kero, S. Barone, P. Srichomkwun, H. Iwayama, E.G. Serra, H. Saglam, E. Eren, O. Tarim, A.K. Nicholas, I. Zvetkova, C.A. Anderson, F.E.K. Frankl, K. Boelaert, M. Ojaniemi, J. Jääskeläinen, K. Patyra, C. Löf, E.D. Williams, M. Soleimani, T. Barrett, E.R. Maher, V.K. Chatterjee, S. Refetoff, N. Schoenmakers, UK10K Consortium, Homozygous loss-of-function mutations in SLC26A7 cause goitrous congenital hypothyroidism. JCI Insight 3(20), e99631 (2018)

    PubMed Central  Google Scholar 

  16. P. Kühnen, S. Turan, S. Fröhler, T. Güran, S. Abali, H. Biebermann, A. Bereket, A. Grüters, W. Chen, H. Krude, Identification of PENDRIN (SLC26A4) mutations in patients with congenital hypothyroidism and “apparent” thyroid dysgenesis. J. Clin. Endocrinol. Metab. 99(1), E169–E176 (2014)

    PubMed  Google Scholar 

  17. P. Srichomkwun, J. Takamatsu, D.A. Nickerson, M.J. Bamshad, J.X. Chong, S. Refetoff, DUOX2 gene mutation manifesting as resistance to thyrotropin phenotype. Thyroid 27(1), 129–131 (2016)

    PubMed  Google Scholar 

  18. A. Stoupa, R. Chaabane, M. Guériouz, C. Raynaud-Ravni, P. Nitschke, C. Bole-Feysot, M. Mnif, L. Ammar Keskes, M. Hachicha, N. Belguith, M. Polak, A. Carré, Thyroid hypoplasia in congenital hypothyroidism associated with thyroid peroxidase mutations. Thyroid 28(7), 941–944 (2018)

    CAS  PubMed  Google Scholar 

  19. M.M.L. Kizys, R.A. Louzada, M. Mitne-Neto, J.R. Jara, G.K. Furuzawa, D.P. de Carvalho, M.R. Dias-da-Silva, S. Nesi-Fran‡a, C. Dupuy, R.M.B. Maciel, DUOX2 mutations are associated with congenital hypothyroidism with ectopic thyroid gland. J. Clin. Endocrinol. Metab 102(11), 4060–4071 (2017)

    PubMed  Google Scholar 

  20. Z. Aycan, H. Cangul, M. Muzza, V.N. Bas, L. Fugazzola, V.K. Chatterjee, L. Persani, N. Schoenmakers, Digenic DUOX1 and DUOX2 mutations in cases with congenital hypothyroidism. J. Clin. Endocrinol. Metab 102(9), 3085–3090 (2017)

    PubMed  PubMed Central  Google Scholar 

  21. L. Persani, B. Cangiano, M. Bonomi, The diagnosis and management of central hypothyroidism in 2018. Endocr. Connect. 8(2), R44–R54 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. L. Persani, G. Brabant, M. Dattani, M. Bonomi, U. Feldt-Rasmussen, E. Fliers, A. Gruters, D. Maiter, N. Schoenmakers, A.S.P. van Trotsenburg, European Thyroid Association (ETA) guidelines on the diagnosis and management of central hypothyroidism. Eur. Thyroid 7(5), 225–237 (2018)

    Google Scholar 

  23. K. Miyai, M. Azukizawa, Y. Kumahara, Familial isolated thyrotropin deficiency with cretinism. N. Engl. J. Med. 285(19), 1043–1048 (1971)

    CAS  PubMed  Google Scholar 

  24. M. Bonomi, M.C. Proverbio, G. Weber, G. Chiumello, P. Beck-Peccoz, L. Persani, Hyperplastic pituitary gland, high serum glycoprotein hormone alpha-subunit, and variable circulating thyrotropin (TSH) levels as hallmark of central hypothyroidism due to mutations of the TSH beta gene. J. Clin. Endocrinol. Metab. 86(4), 1600–1604 (2001)

    CAS  PubMed  Google Scholar 

  25. M. Bonomi, M. Busnelli, P. Beck-Peccoz, D. Costanzo, F. Antonica, C. Dolci, A. Pilotta, F. Buzi, L. Persani, A family with complete resistance to thyrotropin-releasing hormone. N. Engl. J. Med. 360(7), 731–734 (2009)

    CAS  PubMed  Google Scholar 

  26. Y. Sun, B. Bak, N. Schoenmakers, A.S. van Trotsenburg, W. Oostdijk, P. Voshol, E. Cambridge, J.K. White, P. le Tissier, S.N. Gharavy, J.P. Martinez-Barbera, W.H. Stokvis-Brantsma, T. Vulsma, M.J. Kempers, L. Persani, I. Campi, M. Bonomi, P. Beck-Peccoz, H. Zhu, T.M. Davis, A.C. Hokken-Koelega, D.G. Del Blanco, J.J. Rangasami, C.A. Ruivenkamp, J.F. Laros, M. Kriek, S.G. Kant, C.A. Bosch, N.R. Biermasz, N.M. Appelman-Dijkstra, E.P. Corssmit, G.C. Hovens, A.M. Pereira, J.T. den Dunnen, M.G. Wade, M.H. Breuning, R.C. Hennekam, K. Chatterjee, M.T. Dattani, J.M. Wit, D.J. Bernard, Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat. Genet. 44(12), 1375–1381 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. S.D. Joustra, C.A. Heinen, N. Schoenmakers, M. Bonomi, B.E. Ballieux, M.O. Turgeon, D.J. Bernard, E. Fliers, A.S. van Trotsenburg, M. Losekoot, L. Persani, J.M. Wit, N.R. Biermasz, A.M. Pereira, W. Oostdijk, IGSF1 Clinical Care Group, IGSF1 deficiency: lessons from an extensive case series and recommendations for clinical management. J. Clin. Endocrinol. Metab. 102(6), 2125 (2016).

    Google Scholar 

  28. C.A. Heinen, M. Losekoot, Y. Sun, P.J. Watson, L. Fairall, S.D. Joustra, N. Zwaveling-Soonawala, W. Oostdijk, E.L. van den Akker, M. Alders, G.W. Santen, R.R. van Rijn, W.A. Dreschler, O.V. Surovtseva, N.R. Biermasz, R.C. Hennekam, J.M. Wit, J.W. Schwabe, A. Boelen, E. Fliers, A.S. van Trotsenburg, Mutations in TBL1X are associated with central hypothyroidism. J. Clin. Endocrinol. Metab. 101(12), 4564–4573 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. C.A. Heinen, E.M. de Vries, M. Alders, H. Bikker, N. Zwaveling-Soonawala, E.L.T. van den Akker, B. Bakker, G. Hoorweg-Nijman, F. Roelfsema, R.C. Hennekam, A. Boelen, A.S.P. van Trotsenburg, E. Fliers, Mutations in IRS4 are associated with central hypothyroidism. J. Med. Genet. 55(10), 693–700 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Léger, D. Marinovic, C. Garel, C. Bonaıïti-Pellié, M. Polak, P. Czernichow, Thyroid developmental anomalies in first degree relatives of children with congenital hypothyroidism. J. Clin. Endocrinol. Metab. 87, 575–580 (2002)

    PubMed  Google Scholar 

  31. S. Stoppa-Vaucher, G. Van Vliet, J. Deladoëy, Variation by ethnicity in the prevalence of congenital hypothyroidism due to thyroid dysgenesis. Thyroid 21(1), 13–18 (2011)

    PubMed  PubMed Central  Google Scholar 

  32. E. Passeri, M. Frigerio, T. De Filippis, R. Valaperta, P. Capelli, E. Costa, L. Fugazzola, F. Marelli, P. Porazzi, C. Arcidiacono, M. Carminati, B. Ambrosi, L. Persani, S. Corbetta, Increased risk for non-autoimmune hypothyroidism in young patients with congenital heart defects. J. Clin. Endocrinol. Metab. 96(7), E1115–E1119 (2011)

    CAS  PubMed  Google Scholar 

  33. L. Persani, G. Rurale, T. de Filippis, E. Galazzi, M. Muzza, L. Fugazzola, Genetics and management of congenital hypothyroidism. Best. Pr. Res Clin. Endocrinol. Metab. 32(4), 387–396 (2018)

    CAS  Google Scholar 

  34. A.K. Nicholas, E.G. Serra, H. Cangul, S. Alyaarubi, I. Ullah, E. Schoenmakers, A. Deeb, A.M. Habeb, M. Almaghamsi, C. Peters, N. Nathwani, Z. Aycan, H. Saglam, E. Bober, M. Dattani, S. Shenoy, P.G. Murray, A. Babiker, R. Willemsen, A. Thankamony, G. Lyons, R. Irwin, R. Padidela, K. Tharian, J.H. Davies, V. Puthi, S.M. Park, A.F. Massoud, J.W. Gregory, A. Albanese, E. Pease-Gevers, H. Martin, K. Brugger, E.R. Maher, V.K. Chatterjee, C.A. Anderson, N. Schoenmakers, Comprehensive screening of eight known causative genes in congenital hypothyroidism with gland-in-situ. J. Clin. Endocrinol. Metab. 101(12), 4521–4531 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. T. de Filippis, G. Gelmini, E. Paraboschi, M.C. Vigone, M. Di Frenna, F. Marelli, M. Bonomi, A. Cassio, D. Larizza, M. Moro, G. Radetti, M. Salerno, D. Ardissino, G. Weber, D. Gentilini, F. Guizzardi, S. Duga, L. Persani, A frequent oligogenic involvement in congenital hypothyroidism. Hum. Mol. Genet. 26(13), 2507–2514 (2017)

    PubMed  Google Scholar 

  36. E. Amendola, P. De Luca, P.E. Macchia, D. Terracciano, A. Rosica, G. Chiappetta, S. Kimura, A. Mansouri, A. Affuso, C. Arra, V. Macchia, R. Di Lauro, De, M. Felice, A mouse model demonstrates a multigenic origin of congenital hypothyroidism. Endocrinology 146(12), 5038–5047 (2005)

    CAS  PubMed  Google Scholar 

  37. S. Karlin, C. Burge, Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc. Natl Acad. Sci. USA 93(4), 1560–1565 (1996)

    CAS  PubMed  Google Scholar 

  38. J. Amiel, D. Trochet, M. Clément-Ziza, A. Munnich, S. Lyonnet, Polyalanine expansions in human. Hum. Mol. Genet. 13(2), R235–R243 (2004)

    CAS  PubMed  Google Scholar 

  39. P.E. Macchia, M.G. Mattei, P. Lapi, G. Fenzi, R. Di Lauro, Cloning, chromosomal localization and identification of polymorphisms in the human thyroid transcription factor 2 gene (TITF2). Biochimie 81(5), 433–440 (1999)

    CAS  PubMed  Google Scholar 

  40. A. Carré, M. Castanet, S. Sura-Trueba, G. Szinnai, G. Van Vliet, D. Trochet, J. Amiel, J. Léger, P. Czernichow, V. Scotet, M. Polak, Polymorphic length of FOXE1 alanine stretch: evidence for genetic susceptibility to thyroid dysgenesis. Hum. Genet. 122(5), 467–476 (2007)

    PubMed  Google Scholar 

  41. C.P. Pimentel, E.A. Cortinhas-Alves, E.H.C. de Oliveira, L.C. Santana-da-Silva, Does the polymorphism in the length of the polyalanine tract of FOXE1 gene influence the risk of thyroid dysgenesis occurrence? J. Thyroid Res. 2017, 2793205 (2017)

  42. E. Szczepanek, M. Ruchala, W. Szaflarski, B. Budny, L. Kilinska, M. Jaroniec, M. Niedziela, M. Zabel, J. Sowinski, FOXE1 polyalanine tract length polymorphism in patients with thyroid hemiagenesis and subjects with normal thyroid. Horm. Res. Paediatr. 75(5), 329–334 (2011)

    CAS  PubMed  Google Scholar 

  43. E. Medda, M.C. Vigone, A. Cassio, F. Calaciura, P. Costa, G. Weber, T. de Filippis, G. Gelmini, M. Di Frenna, S. Caiulo, R. Ortolano, D. Rotondi, M. Bartolucci, R. Gelsomino, S. De Angelis, M. Gabbianelli, L. Persani, A. Olivieri, Neonatal screening for congenital hypothyroidism: what can we learn from discordant twins? J. Clin. Endocrinol. Metab. 104(12), 5765–5779 (2019)

    PubMed  Google Scholar 

  44. G. Van Vliet, J. Deladoëy, Sublingual thyroid ectopy: similarities and differences with Kallmann syndrome. F1000Prime Rep. 7(20), (2015)

  45. L. Fugazzola, N. Cerutti, D. Mannavola, G. Vannucchi, C. Fallini, L. Persani, P. Beck-Peccoz, Monoallelic expression of mutant thyroid peroxidase allele causing total iodide organification defect. J. Clin. Endocrinol. Metab. 88(7), 3264–3271 (2003)

    CAS  PubMed  Google Scholar 

  46. F. Magne, B. Ge, S. Larrivée-Vanier, G. Van Vliet, M.E. Samuels, T. Pastinen, J. Deladoëy, Demonstration of autosomal monoallelic expression in thyroid tissue assessed by whole-exome and bulk RNA sequencing. Thyroid 26(6), 852–859 (2016)

    CAS  PubMed  Google Scholar 

  47. F. Magne, R. Serpa, G. Van Vliet, M.E. Samuels, J. Deladoëy, Somatic mutations are not observed by exome sequencing of lymphocyte DNA from monozygotic twins discordant for congenital hypothyroidism due to thyroid dysgenesis. Horm. Res. Paediatr. 83(2), 79–85 (2014)

    PubMed  PubMed Central  Google Scholar 

  48. A. Thorwarth, I. Mueller, H. Biebermann, H.H. Ropers, A. Grueters, H. Krude, R. Ullmann, Screening chromosomal aberrations by array comparative genomic hybridization in 80 patients with congenital hypothyroidism and thyroid dysgenesis. J. Clin. Endocrinol. Metab. 95(7), 3446–3452 (2010)

    CAS  PubMed  Google Scholar 

  49. A. Olivieri, E. Medda, S. De Angelis, H. Valensise, M. De Felice, C. Fazzini, I. Cascino, V. Cordeddu, M. Sorcini, M.A. Stazi, Study Group for Congenital Hypothyroidism, High risk of congenital hypothyroidism in multiple pregnancies. J. Clin. Endocrinol. Metab. 92(8), 3141–3147 (2007)

    CAS  PubMed  Google Scholar 

  50. M.J. Holness, M.C. Sugden, Epigenetic regulation of metabolism in children born small for gestational age. Curr. Opin. Clin. Nutr. Metab. Care 9(4), 482–488 (2006)

    CAS  PubMed  Google Scholar 

  51. R. Abu-Khudir, J. Paquette, A. Lefort, F. Libert, J.P. Chanoine, G. Vassart, J. Deladoëy, Transcriptome, methylome and genomic variations analysis of ectopic thyroid glands. PLoS ONE 5(10), (2010)

  52. S. Narumi, K. Matsubara, T. Ishii, T. Hasegawa, Methylome analysis of thyroid ectopy shows no disease-specific DNA methylation signature. Clin. Pediatr. Endocrinol. 27(4), 235–238 (2018). https://doi.org/10.1297/cpe.27.235

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.S., M.M and T.F. contributed to the literature search and the drafting of the paper. All other authors contributed to the critical revision of the paper. All authors approved the final version for submission.

Corresponding author

Correspondence to Aurore Carré.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoupa, A., Kariyawasam, D., Muzza, M. et al. New genetics in congenital hypothyroidism. Endocrine 71, 696–705 (2021). https://doi.org/10.1007/s12020-021-02646-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02646-9

Keywords

Navigation