Skip to main content

Advertisement

Log in

Associations of GDF-15 and GDF-15/adiponectin ratio with odds of type 2 diabetes in the Chinese population

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

We elucidate the effect of Growth differentiation factor-15(GDF-15)/adiponectin ratio in improving the assessment value for odds of type 2 diabetes.

Methods

Cross-sectional design. A total of 405 participants (135 patients with newly diagnosed type 2 diabetes, 135 age- and sex-matched participants with prediabetes, and 135 healthy controls) were collected from Guangzhou and Dongguan, China. The serum GDF-15 and adiponectin levels were measured by ELISA and latex-enhanced immunoturbidimetry. Logistic regression analysis and restricted cubic splines were used to evaluate the associations between diabetes and the indicators.

Results

The low level of adiponectin and high GDF-15/adiponectin ratio were significantly associated with increased odds of type 2 diabetes, but not for GDF-15. Three clusters were identified based on the K-means clustering analysis. Compared to the lowest quartiles of adiponectin, the OR and 95% CI of the highest adiponectin with type 2 diabetes was 0.24 (0.07–0.74, p trend = 0.004) after adjusting for sex, age, BMI, and DBP only in cluster 1. After adjusting for confounding factors, subjects with the highest GDF-15/adiponectin ratio quartiles had 3.9 times (OR = 3.85, 95% CI = 0.76–24.25) and 3.8 times (OR = 3.80, 95% CI = 1.02–14.68) higher odds of type 2 diabetes in cluster 2 and cluster 3, respectively. The association between the GDF-15/adiponectin ratio and type 2 diabetes was attenuated, but still remarkable (OR = 3.18, 95% CI = 1.11–10.18), in cluster 1.

Conclusions

Higher GDF-15/adiponectin ratio is independently associated with increased odds of type 2 diabetes for all study populations, suggesting that the GDF-15/adiponectin ratio may be a better indicator of type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article or in the data repositories listed in References.

Abbreviations

FPG:

Fasting plasma glucose

GDF-15:

Growth differentiation factor-15

HC:

Hip circumference

SBP:

Systolic blood pressure

TC:

Total cholesterol

TG:

Triglycerides

WC:

Waist circumference

References

  1. P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A.A. Motala, K. Ogurtsova, J.E. Shaw, D. Bright, R. Williams; IDF Diabetes Atlas Committee, Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pr. 157, 107843 (2019). https://doi.org/10.1016/j.diabres.2019.107843

    Article  Google Scholar 

  2. K. Unsicker, B. Spittau, K. Krieglstein, The multiple facets of the TGF-beta family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev. 24(4), 373–384 (2013). https://doi.org/10.1016/j.cytogfr.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  3. L. Scheja, J. Heeren, The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15(9), 507–524 (2019). https://doi.org/10.1038/s41574-019-0230-6

    Article  CAS  PubMed  Google Scholar 

  4. A.P. Coll, M. Chen, P. Taskar, D. Rimmington, S. Patel, J.A. Tadross, I. Cimino, M. Yang, P. Welsh, S. Virtue, D.A. Goldspink, E.L. Miedzybrodzka, A.R. Konopka, R.R. Esponda, J.T. Huang, Y.C.L. Tung, S. Rodriguez-Cuenca, R.A. Tomaz, H.P. Harding, A. Melvin, G.S.H. Yeo, D. Preiss, A. Vidal-Puig, L. Vallier, K.S. Nair, N.J. Wareham, D. Ron, F.M. Gribble, F. Reimann, N. Sattar, D.B. Savage, B.B. Allan, S. O’Rahilly, GDF15 mediates the effects of metformin on body weight and energy balance. Nature 578(7795), 444–448 (2020). https://doi.org/10.1038/s41586-019-1911-y

    Article  CAS  PubMed  Google Scholar 

  5. S.L. Au Yeung, S. Luo, C.M. Schooling, The impact of GDF-15, a biomarker for metformin, on the risk of coronary artery disease, breast and colorectal cancer, and type 2 diabetes and metabolic traits: a Mendelian randomisation study. Diabetologia 62(9), 1638–1646 (2019). https://doi.org/10.1007/s00125-019-4913-2

    Article  CAS  PubMed  Google Scholar 

  6. A. Bidadkosh, S.P.H. Lambooy, H.J. Heerspink, M.J. Pena, R.H. Henning, H. Buikema, L.E. Deelman, Predictive properties of biomarkers GDF-15, NTproBNP, and hs-TnT for morbidity and mortality in patients with type 2 diabetes with nephropathy. Diabetes Care 40(6), 784–792 (2017). https://doi.org/10.2337/dc16-2175

    Article  CAS  PubMed  Google Scholar 

  7. N. Pavo, R. Wurm, S. Neuhold, C. Adlbrecht, G. Vila, G. Strunk, M. Clodi, M. Resl, H. Brath, R. Prager, A. Luger, R. Pacher, M. Hulsmann, GDF-15 is associated with cancer incidence in patients with type 2 diabetes. Clin. Chem. 62(12), 1612–1620 (2016). https://doi.org/10.1373/clinchem.2016.257212

    Article  CAS  PubMed  Google Scholar 

  8. M.Y. Shin, J.M. Kim, Y.E. Kang, M.K. Kim, K.H. Joung, J.H. Lee, K.S. Kim, H.J. Kim, B.J. Ku, M. Shong, Association between Growth Differentiation Factor 15 (GDF15) and cardiovascular risk in patients with newly diagnosed type 2 diabetes mellitus. J. Korean Med. Sci. 31(9), 1413–1418 (2016). https://doi.org/10.3346/jkms.2016.31.9.1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Carstensen, C. Herder, E.J. Brunner, K. Strassburger, A.G. Tabak, M. Roden, D.R. Witte, Macrophage inhibitory cytokine-1 is increased in individuals before type 2 diabetes diagnosis but is not an independent predictor of type 2 diabetes: the Whitehall II study. Eur. J. Endocrinol. 162(5), 913–917 (2010). https://doi.org/10.1530/EJE-09-1066

    Article  CAS  PubMed  Google Scholar 

  10. T. Kempf, A. Guba-Quint, J. Torgerson, M.C. Magnone, C. Haefliger, M. Bobadilla, K.C. Wollert, Growth differentiation factor 15 predicts future insulin resistance and impaired glucose control in obese nondiabetic individuals: results from the XENDOS trial. Eur. J. Endocrinol. 167(5), 671–678 (2012). https://doi.org/10.1530/EJE-12-0466

    Article  CAS  PubMed  Google Scholar 

  11. X. Bao, Y. Borne, I.F. Muhammad, J. Nilsson, L. Lind, O. Melander, K. Niu, M. Orho-Melander, G. Engstrom, Growth differentiation factor 15 is positively associated with incidence of diabetes mellitus: the Malmo Diet and Cancer-Cardiovascular Cohort. Diabetologia 62(1), 78–86 (2019). https://doi.org/10.1007/s00125-018-4751-7

    Article  CAS  PubMed  Google Scholar 

  12. H. Fang, R.L. Judd, Adiponectin regulation and function. Compr. Physiol. 8(3), 1031–1063 (2018). https://doi.org/10.1002/cphy.c170046

    Article  PubMed  Google Scholar 

  13. S.G. Wannamethee, G.D. Lowe, A. Rumley, L. Cherry, P.H. Whincup, N. Sattar, Adipokines and risk of type 2 diabetes in older men. Diabetes Care 30(5), 1200–1205 (2007). https://doi.org/10.2337/dc06-2416

    Article  CAS  PubMed  Google Scholar 

  14. C. Herder, M. Peltonen, P.A. Svensson, M. Carstensen, P. Jacobson, M. Roden, L. Sjostrom, L. Carlsson, Adiponectin and bariatric surgery: associations with diabetes and cardiovascular disease in the Swedish Obese Subjects Study. Diabetes Care 37(5), 1401–1409 (2014). https://doi.org/10.2337/dc13-1362

    Article  CAS  PubMed  Google Scholar 

  15. S. Lindberg, J.S. Jensen, S.H. Pedersen, S. Galatius, J. Frystyk, A. Flyvbjerg, M. Bjerre, R. Mogelvang, Low adiponectin levels and increased risk of type 2 diabetes in patients with myocardial infarction. Diabetes Care 37(11), 3003–3008 (2014). https://doi.org/10.2337/dc14-0932

    Article  CAS  PubMed  Google Scholar 

  16. C. Herder, M. Carstensen, D.M. Ouwens, Anti-inflammatory cytokines and risk of type 2 diabetes. Diabetes, Obes. Metab. 15, 39–50 (2013).

    Article  CAS  Google Scholar 

  17. C. Liu, X. Feng, Q. Li, Y. Wang, Q. Li, M. Hua, Adiponectin, TNF-alpha and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis. Cytokine 86, 100–109 (2016). https://doi.org/10.1016/j.cyto.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  18. A.E. Berezin, Diabetes mellitus related biomarker: The predictive role of growth-differentiation factor-15. Diabetes Metab. Syndr. 10(Suppl 1), S154–S157 (2016). https://doi.org/10.1016/j.dsx.2015.09.016

    Article  PubMed  Google Scholar 

  19. A.A. Ghadge, A.A. Khaire, A.A. Kuvalekar, Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 39, 151–158 (2018). https://doi.org/10.1016/j.cytogfr.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  20. J. Lu, Y. Zhang, X. Dong, J. Lu, C. Zhang, J. Liu, Q. Yu, H. Teng, Q. Yao, J. Yin, L. Qin, Association between MIC-1 and Type 2 diabetes: a combined analysis. Dis. Markers 2019, 7284691 (2019). https://doi.org/10.1155/2019/7284691

  21. C. Huth, C. von Toerne, F. Schederecker, T. de Las Heras Gala, C. Herder, F. Kronenberg, C. Meisinger, W. Rathmann, W. Koenig, M. Waldenberger, M. Roden, A. Peters, S.M. Hauck, B. Thorand, Protein markers and risk of type 2 diabetes and prediabetes: a targeted proteomics approach in the KORA F4/FF4 study. Eur. J. Epidemiol. 34(4), 409–422 (2019). https://doi.org/10.1007/s10654-018-0475-8

    Article  CAS  PubMed  Google Scholar 

  22. R.B. Goldberg, G.A. Bray, S.M. Marcovina, K.J. Mather, T.J. Orchard, L. Perreault, M. Temprosa, Diabetes Prevention Program Research Group, Non-traditional biomarkers and incident diabetes in the Diabetes Prevention Program: comparative effects of lifestyle and metformin interventions. Diabetologia 62(1), 58–69 (2019). https://doi.org/10.1007/s00125-018-4748-2

    Article  CAS  PubMed  Google Scholar 

  23. Z. Liu, S. Liang, S. Que, L. Zhou, S. Zheng, A. Mardinoglu, Meta-analysis of adiponectin as a biomarker for the detection of metabolic syndrome. Front. Physiol. 9, 1238 (2018). https://doi.org/10.3389/fphys.2018.01238

    Article  PubMed  PubMed Central  Google Scholar 

  24. J.R. Kizer, A.M. Arnold, D. Benkeser, J.H. Ix, L. Djousse, S.J. Zieman, J.I. Barzilay, R.P. Tracy, C.S. Mantzoros, D.S. Siscovick, K.J. Mukamal, Total and high-molecular-weight adiponectin and risk of incident diabetes in older people. Diabetes Care 35(2), 415–423 (2012). https://doi.org/10.2337/dc11-1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M.-F. Hivert, L.M. Sullivan, P. Shrader, C.S. Fox, D.M. Nathan, R.B. D'Agostino Sr, P.W.F. Wilson, B. Kowall, C. Herder, C. Meisinger, B. Thorand, W. Rathmann, J.B. Meigs, Insulin resistance influences the association of adiponectin levels with diabetes incidence in two population-based cohorts: the Cooperative Health Research in the Region of Augsburg (KORA) S4/F4 study and the Framingham Offspring Study. Diabetologia 54, 1019–1024 (2011). https://doi.org/10.1007/s00125-011-2067-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Q. Ding, T. Mracek, P. Gonzalez-Muniesa, K. Kos, J. Wilding, P. Trayhurn, C. Bing, Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology 150(4), 1688–1696 (2009). https://doi.org/10.1210/en.2008-0952

    Article  CAS  PubMed  Google Scholar 

  27. V.W. Tsai, H.P. Zhang, R. Manandhar, K.K.M. Lee-Ng, H. Lebhar, C.P. Marquis, Y. Husaini, A. Sainsbury, D.A. Brown, S.N. Breit, Treatment with the TGF-b superfamily cytokine MIC-1/GDF15 reduces the adiposity and corrects the metabolic dysfunction of mice with diet-induced obesity. Int J. Obes. 42(3), 561–571 (2018). https://doi.org/10.1038/ijo.2017.258

    Article  CAS  Google Scholar 

  28. C.M. Sena, A. Pereira, R. Fernandes, L. Letra, R.M. Seica, Adiponectin improves endothelial function in mesenteric arteries of rats fed a high-fat diet: role of perivascular adipose tissue. Br. J. Pharm. 174(20), 3514–3526 (2017). https://doi.org/10.1111/bph.13756

    Article  CAS  Google Scholar 

  29. C.M. Kusminski, A.L. Ghaben, T.S. Morley, R.J. Samms, A.C. Adams, Y. An, J.A. Johnson, N. Joffin, T. Onodera, C. Crewe, W.L. Holland, R. Gordillo, P.E. Scherer, A novel model of diabetic complications: adipocyte mitochondrial dysfunction triggers massive beta-cell hyperplasia. Diabetes 69(3), 313–330 (2020). https://doi.org/10.2337/db19-0327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. L. Qiao, J.S. Wattez, S. Lee, A. Nguyen, J. Schaack, W.W. Hay Jr, J. Shao, Adiponectin deficiency impairs maternal metabolic adaptation to pregnancy in mice. Diabetes 66(5), 1126–1135 (2017). https://doi.org/10.2337/db16-1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. H.K. Chung, D. Ryu, K.S. Kim, J.Y. Chang, Y.K. Kim, H.S. Yi, S.G. Kang, M.J. Choi, S.E. Lee, S.B. Jung, M.J. Ryu, S.J. Kim, G.R. Kweon, H. Kim, J.H. Hwang, C.H. Lee, S.J. Lee, C.E. Wall, M. Downes, R.M. Evans, J. Auwerx, M. Shong, Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J. Cell Biol. 216(1), 149–165 (2017). https://doi.org/10.1083/jcb.201607110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. I. Dostalova, T. Roubicek, M. Bartlova, M. Mraz, Z. Lacinova, D. Haluzikova, P. Kavalkova, M. Matoulek, M. Kasalicky, M. Haluzik, Increased serum concentrations of macrophage inhibitory cytokine-1 in patients with obesity and type 2 diabetes mellitus: the influence of very low calorie diet. Eur. J. Endocrinol. 161(3), 397–404 (2009). https://doi.org/10.1530/EJE-09-0417

    Article  CAS  PubMed  Google Scholar 

  33. J.H. Hong, H.K. Chung, H.Y. Park, K.H. Joung, J.H. Lee, J.G. Jung, K.S. Kim, H.J. Kim, B.J. Ku, M. Shong, GDF15 is a novel biomarker for impaired fasting glucose. Diabetes Metab. J. 38(6), 472–479 (2014). https://doi.org/10.4093/dmj.2014.38.6.472

    Article  PubMed  PubMed Central  Google Scholar 

  34. C.L. Cheung, K.C.B. Tan, P.C.M. Au, G.H.Y. Li, B.M.Y. Cheung, Evaluation of GDF15 as a therapeutic target of cardiometabolic diseases in human: a Mendelian randomization study. EBioMedicine 41, 85–90 (2019). https://doi.org/10.1016/j.ebiom.2019.02.021

    Article  PubMed  PubMed Central  Google Scholar 

  35. D. Aguilar, M.L. Fernandez, Hypercholesterolemia induces adipose dysfunction in conditions of obesity and nonobesity. Adv. Nutr. 5(5), 497–502 (2014). https://doi.org/10.3945/an.114.005934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S.J. Gasparini, M.M. Swarbrick, S. Kim, L.J. Thai, H. Henneicke, L.L. Cavanagh, J. Tu, M.C. Weber, H. Zhou, M.J. Seibel, Androgens sensitise mice to glucocorticoid-induced insulin resistance and fat accumulation. Diabetologia 62(8), 1463–1477 (2019). https://doi.org/10.1007/s00125-019-4887-0

    Article  CAS  PubMed  Google Scholar 

  37. L. Frederiksen, K. Hojlund, D.M. Hougaard, T.H. Mosbech, R. Larsen, A. Flyvbjerg, J. Frystyk, K. Brixen, M. Andersen, Testosterone therapy decreases subcutaneous fat and adiponectin in aging men. Eur. J. Endocrinol. 166(3), 469–476 (2012). https://doi.org/10.1530/EJE-11-0565

    Article  CAS  PubMed  Google Scholar 

  38. M.R. Bootcov, A.R. Bauskin, S.M. Valenzuela, A.G. Moore, M. Bansal, X.Y. He, H.P. Zhang, M. Donnellan, S. Mahler, K. Pryor, B.J. Walsh, R.C. Nicholson, W.D. Fairlie, S.B. Por, J.M. Robbins, S.N. Breit, MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc. Natl Acad. Sci. USA 94(21), 11514–11519 (1997). https://doi.org/10.1073/pnas.94.21.11514

    Article  CAS  PubMed  Google Scholar 

  39. H. Yanai, H. Yoshida, Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: mechanisms and perspectives. Int. J. Mol. Sci. 20(5) (2019). https://doi.org/10.3390/ijms20051190

  40. A. Kohlgruber, L. Lynch, Adipose tissue inflammation in the pathogenesis of type 2 diabetes. Curr. Diab. Rep. 15(11), 92 (2015). https://doi.org/10.1007/s11892-015-0670-x

    Article  CAS  PubMed  Google Scholar 

  41. F. Prattichizzo, V. De Nigris, R. Spiga, E. Mancuso, L. La Sala, R. Antonicelli, R. Testa, A.D. Procopio, F. Olivieri, A. Ceriello, Inflammageing and metaflammation: the yin and yang of type 2 diabetes. Ageing Res. Rev. 41, 1–17 (2018). https://doi.org/10.1016/j.arr.2017.10.003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the following sources: (1) National Key Research and Development Project of China (grants numbers 2016YFC0901204); (2) Science and Technique Development Special Fund Project of Guangdong Province (Social Development Field) (grants numbers 2017B020209002); (3) Provincial Science and Technology Applied Science and Technology R&D Special Fund Project (grants numbers 2016B020238001). The linguistic editing and proofreading have been performed by AJESCI during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: M.R., X.Z., and L.Y.; acquired the clinical data: H.L., Q.C., K.S., C.C., M.X., and Y.L.; performed the experiments: W.X., X.W., H.L., F.L., X.Z.; analyzed the data: L.Y., W.X., and X.W.; wrote the manuscript: W.X. and X.W. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiuwei Zhang or Meng Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The present study was approved by the Ethics Committee of Sun Yat-sen Memorial Hospital, Sun Yat-sen University.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

All authors have read and approved to submit the manuscript to Endocrine in its current form.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Xuan, W., You, L. et al. Associations of GDF-15 and GDF-15/adiponectin ratio with odds of type 2 diabetes in the Chinese population. Endocrine 72, 423–436 (2021). https://doi.org/10.1007/s12020-021-02632-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02632-1

Keywords

Navigation