Skip to main content
Log in

Variation analysis of anti-Müllerian hormone gene in Chinese women with polycystic ovary syndrome

  • Endocrine Genetics/Epigenetics
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Anti-Müllerian hormone (AMH) is crucial for folliculogenesis. Prenatal exposure to AMH in mice produces a phenocopy of polycystic ovary syndrome (PCOS) in the adult female offspring. The aim of this study was to determine whether genetic variation in AMH gene contribute to PCOS in women of Chinese ancestry.

Methods

We conducted a case–control genetic study in 383 PCOS case and 433 control women of Chinese ancestry. The exons and the 5′ flanking region of AMH were sanger sequenced. Bioinformatic prediction of variant deleteriousness was performed.

Results

Seven novel heterozygous variants along with 15 rare known variants in AMH were identified in women with PCOS but not in controls. The novel variants included one frameshift variant (c.125_129delACTTG), one synonymous variant (c.1095C>T), one variant (c.-14T>C) in the 5’-untranslated region (UTR), four variants(c.-775C>T, c.-682C>T, c.-333A>G, c.-137A>T) in 5′ flanking sequence. Of all the AMH variants identified in women with PCOS, eight were predicted to be deleterious by bioinformatic analysis. The PCOS carriers of predicted-to-be-deleterious PCOS-specific AMH variants had increased total follicle numbers compared to PCOS noncarriers (p = 0.021).

Conclusions

Our findings suggest the AMH plays a role in the development of PCOS. The exact mechanisms by which the predicted-to-be-deleterious novel and rare AMH variants described in our study affect AMH function requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All the data generated and analyses during the current study are available from the corresponding author on reasonable request.

References

  1. M.O. Goodarzi, D.A. Dumesic, G. Chazenbalk, R. Azziz, Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 7(4), 219–231 (2011). https://doi.org/10.1038/nrendo.2010.217

    Article  CAS  PubMed  Google Scholar 

  2. S. Franks, L.J. Webber, M. Goh, A. Valentine, D.M. White, G.S. Conway, S. Wiltshire, M.I. McCarthy, Ovarian morphology is a marker of heritable biochemical traits in sisters with polycystic ovaries. J. Clin. Endocrinol. Metab. 93(9), 3396–3402 (2008). https://doi.org/10.1210/jc.2008-0369

    Article  CAS  PubMed  Google Scholar 

  3. R. Azziz, Polycystic ovary syndrome is a family affair. J. Clin. Endocrinol. Metab. 93(5), 1579–1581 (2008). https://doi.org/10.1210/jc.2008-0477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Z.J. Chen, H. Zhao, L. He, Y. Shi, Y. Qin, Y. Shi, Z. Li, L. You, J. Zhao, J. Liu, X. Liang, X. Zhao, J. Zhao, Y. Sun, B. Zhang, H. Jiang, D. Zhao, Y. Bian, X. Gao, L. Geng, Y. Li, D. Zhu, X. Sun, J.E. Xu, C. Hao, C.E. Ren, Y. Zhang, S. Chen, W. Zhang, A. Yang, J. Yan, Y. Li, J. Ma, Y. Zhao, Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. 43(1), 55–59 (2011). https://doi.org/10.1038/ng.732

    Article  CAS  PubMed  Google Scholar 

  5. F.R. Day, D.A. Hinds, J.Y. Tung, L. Stolk, U. Styrkarsdottir, R. Saxena, A. Bjonnes, L. Broer, D.B. Dunger, B.V. Halldorsson, D.A. Lawlor, G. Laval, I. Mathieson, W.L. McCardle, Y. Louwers, C. Meun, S. Ring, R.A. Scott, P. Sulem, A.G. Uitterlinden, N.J. Wareham, U. Thorsteinsdottir, C. Welt, K. Stefansson, J.S.E. Laven, K.K. Ong, J.R.B. Perry, Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat. Commun. 6(1), 8464 (2015). https://doi.org/10.1038/ncomms9464

    Article  CAS  PubMed  Google Scholar 

  6. Y. Shi, H. Zhao, Y. Shi, Y. Cao, D. Yang, Z. Li, B. Zhang, X. Liang, T. Li, J. Chen, J. Shen, J. Zhao, L. You, X. Gao, D. Zhu, X. Zhao, Y. Yan, Y. Qin, W. Li, J. Yan, Q. Wang, J. Zhao, L. Geng, J. Ma, Y. Zhao, G. He, A. Zhang, S. Zou, A. Yang, J. Liu, W. Li, B. Li, C. Wan, Y. Qin, J. Shi, J. Yang, H. Jiang, J.-e Xu, X. Qi, Y. Sun, Y. Zhang, C. Hao, X. Ju, D. Zhao, C.-e Ren, X. Li, W. Zhang, Y. Zhang, J. Zhang, D. Wu, C. Zhang, L. He, Z.-J. Chen, Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat. Genet. 44(9), 1020–1025 (2012). https://doi.org/10.1038/ng.2384

    Article  CAS  PubMed  Google Scholar 

  7. M.G. Hayes, M. Urbanek, D.A. Ehrmann, L.L. Armstrong, J.Y. Lee, R. Sisk, T. Karaderi, T.M. Barber, M.I. McCarthy, S. Franks, C.M. Lindgren, C.K. Welt, E. Diamanti-Kandarakis, D. Panidis, M.O. Goodarzi, R. Azziz, Y. Zhang, R.G. James, M. Olivier, A.H. Kissebah, N. Reproductive Medicine, E. Stener-Victorin, R.S. Legro, A. Dunaif, Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat. Commun. 6, 7502 (2015). https://doi.org/10.1038/ncomms8502

    Article  CAS  PubMed  Google Scholar 

  8. H.F. Escobar-Morreale, Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 14(5), 270–284 (2018). https://doi.org/10.1038/nrendo.2018.24

    Article  PubMed  Google Scholar 

  9. I.B. Carlsson, J.E. Scott, J.A. Visser, O. Ritvos, A.P. Themmen, O. Hovatta, Anti-Mullerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum. Reprod. 21(9), 2223–2227 (2006). https://doi.org/10.1093/humrep/del165

    Article  CAS  PubMed  Google Scholar 

  10. C. Weenen, J.S. Laven, A.R. Von Bergh, M. Cranfield, N.P. Groome, J.A. Visser, P. Kramer, B.C. Fauser, A.P: Themmen, Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol. Hum. Reprod. 10(2), 77–83 (2004). https://doi.org/10.1093/molehr/gah015

    Article  CAS  PubMed  Google Scholar 

  11. R. Fanchin, L.M. Schonauer, C. Righini, J. Guibourdenche, R. Frydman, J. Taieb, Serum anti-Mullerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3. Hum. Reprod. 18(2), 323–327 (2003). https://doi.org/10.1093/humrep/deg042

    Article  CAS  PubMed  Google Scholar 

  12. D. Dewailly, H. Gronier, E. Poncelet, G. Robin, M. Leroy, P. Pigny, A. Duhamel, S. Catteau-Jonard, Diagnosis of polycystic ovary syndrome (PCOS): revisiting the threshold values of follicle count on ultrasound and of the serum AMH level for the definition of polycystic ovaries. Hum. Reprod. 26(11), 3123–3129 (2011). https://doi.org/10.1093/humrep/der297

    Article  CAS  PubMed  Google Scholar 

  13. L.K. Gorsic, G. Kosova, B. Werstein, R. Sisk, R.S. Legro, M.G. Hayes, J.M. Teixeira, A. Dunaif, M. Urbanek, Pathogenic anti-Mullerian hormone variants in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 102(8), 2862–2872 (2017). https://doi.org/10.1210/jc.2017-00612

    Article  PubMed  PubMed Central  Google Scholar 

  14. B. Tata, N.E.H. Mimouni, A.L. Barbotin, S.A. Malone, A. Loyens, P. Pigny, D. Dewailly, S. Catteau-Jonard, I. Sundstrom-Poromaa, T.T. Piltonen, F. Dal Bello, C. Medana, V. Prevot, J. Clasadonte, P. Giacobini, Elevated prenatal anti-Mullerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat. Med. 24(6), 834–846 (2018). https://doi.org/10.1038/s41591-018-0035-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. E.A.-S.Pcwg Rotterdam, Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19(1), 41–47 (2004). https://doi.org/10.1093/humrep/deh098

    Article  Google Scholar 

  16. M. Kircher, D.M. Witten, P. Jain, B.J. O’Roak, G.M. Cooper, J. Shendure, A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46(3), 310–315 (2014). https://doi.org/10.1038/ng.2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J.M. Schwarz, D.N. Cooper, M. Schuelke, D. Seelow, MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 11(4), 361–362 (2014). https://doi.org/10.1038/nmeth.2890

    Article  CAS  PubMed  Google Scholar 

  18. I.A. Adzhubei, S. Schmidt, L. Peshkin, V.E. Ramensky, A. Gerasimova, P. Bork, A.S. Kondrashov, S.R. Sunyaev, A method and server for predicting damaging missense mutations. Nat. Methods 7(4), 248–249 (2010). https://doi.org/10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. P.C. Ng, S. Henikoff, SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31(13), 3812–3814 (2003). https://doi.org/10.1093/nar/gkg509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. R.J. Norman, D. Dewailly, R.S. Legro, T.E. Hickey, Polycystic ovary syndrome. Lancet 370(9588), 685–697 (2007). https://doi.org/10.1016/S0140-6736(07)61345-2

    Article  CAS  PubMed  Google Scholar 

  21. A.M. Gray, A.J. Mason, Requirement for activin A and transforming growth factor-beta 1 pro-regions in homodimer assembly. Science 247(4948), 1328–1330 (1990). https://doi.org/10.1126/science.2315700

    Article  CAS  PubMed  Google Scholar 

  22. N. di Clemente, S.P. Jamin, A. Lugovskoy, P. Carmillo, C. Ehrenfels, J.Y. Picard, A. Whitty, N. Josso, R.B. Pepinsky, R.L. Cate, Processing of anti-mullerian hormone regulates receptor activation by a mechanism distinct from TGF-beta. Mol. Endocrinol. 24(11), 2193–2206 (2010). https://doi.org/10.1210/me.2010-0273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A.L. Durlinger, P. Kramer, B. Karels, F.H. de Jong, J.T. Uilenbroek, J.A. Grootegoed, A.P. Themmen, Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology 140(12), 5789–5796 (1999). https://doi.org/10.1210/endo.140.12.7204

    Article  CAS  PubMed  Google Scholar 

  24. D. Dewailly, C.Y. Andersen, A. Balen, F. Broekmans, N. Dilaver, R. Fanchin, G. Griesinger, T.W. Kelsey, A. La Marca, C. Lambalk, H. Mason, S.M. Nelson, J.A. Visser, W.H. Wallace, R.A. Anderson, The physiology and clinical utility of anti-Mullerian hormone in women. Hum. Reprod. Update 20(3), 370–385 (2014). https://doi.org/10.1093/humupd/dmt062

    Article  PubMed  Google Scholar 

  25. B. Alvaro Mercadal, R. Imbert, I. Demeestere, C. Gervy, A. De Leener, Y. Englert, S. Costagliola, A. Delbaere, AMH mutations with reduced in vitro bioactivity are related to premature ovarian insufficiency. Hum. Reprod. 30(5), 1196–1202 (2015). https://doi.org/10.1093/humrep/dev042

    Article  CAS  PubMed  Google Scholar 

  26. L.R. Hoyos, J.A. Visser, A. McLuskey, G.D. Chazenbalk, T.R. Grogan, D.A. Dumesic, Loss of anti-Mullerian hormone (AMH) immunoactivity due to a homozygous AMH gene variant rs10417628 in a woman with classical polycystic ovary syndrome (PCOS). Hum. Reprod. (2020). https://doi.org/10.1093/humrep/deaa199

  27. L.K. Gorsic, M. Dapas, R.S. Legro, M.G. Hayes, M. Urbanek, Functional genetic variation in the anti-Mullerian hormone pathway in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 104(7), 2855–2874 (2019). https://doi.org/10.1210/jc.2018-02178

    Article  PubMed  PubMed Central  Google Scholar 

  28. Q. Fu, M. Meyer, X. Gao, U. Stenzel, H.A. Burbano, J. Kelso, S. Paabo, DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110(6), 2223–2227 (2013). https://doi.org/10.1073/pnas.1221359110

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Yuehong Bian, Shizhen Su for their technical assistance. They appreciate Zhao Wang, Changming Zhang, Ying Wang, and Xin Zhang, for sample collection. The authors also thank all the patients who participated in this study.

Funding

This study was supported by the National Key Research and Development Program of China (2017YFC1001000), the National Natural Science Foundation of China (31871509, 81622021, 31571548, 31601199), the US National Institutes of Health grants (R01 HD085227) and the Foundation for Distinguished Young Scholars of Shandong Province (JQ201816).

Author information

Authors and Affiliations

Authors

Contributions

H.Z., A.D., and Z-J.C. designed, supported the study; Y.Z.C. and J.T.Z. collected clinical data and blood samples; L.Q. performed experiments; L.Q, S.G.Z., and P.Y analyzed the data; L.Q. drafted the manuscript; H.Z. and A.D. revised the article. All authors gave their final approval of the version to be published.

Corresponding authors

Correspondence to Zi-Jiang Chen, Andrea Dunaif or Han Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Written informed consent was obtained from all participants.

Consent for publication

All the authors have reviewed the final version of the manuscript and approved the publication of the manuscript.

Ethics approval

The study was approved by the institutional review board of Reproductive Medicine, Shandong University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Zhao, S., Yang, P. et al. Variation analysis of anti-Müllerian hormone gene in Chinese women with polycystic ovary syndrome. Endocrine 72, 287–293 (2021). https://doi.org/10.1007/s12020-020-02538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02538-4

Keywords

Navigation