Skip to main content

Consequences of atmospheric contamination by radioiodine: the Chernobyl and Fukushima accidents

Abstract

Purpose

After the accidents of nuclear power plants at Chernobyl and at Fukushima, huge amounts of radioactive iodine were released into the atmosphere.

Methods

We reviewed data on the health consequences of these accidents with a focus on thyroid consequences.

Results

Among the 2 million children who were living in highly contaminated regions in Belarus, Ukraine and Russia, 7000 cases of thyroid cancer had occurred in 2005. This is the most significant radiation-induced consequence of the Chernobyl accident. The increased incidence of thyroid cancer observed in adult population who lived in these highly contaminated regions is at least in major part related to screening and it is not possible to individualize among these thyroid cancers those that are potentially caused by radiation exposure. For populations who lived outside these regions at the time of the accident, there is no detectable consequence of the radiation exposure on the thyroid gland. Among children who lived nearby the Fukushima power plant in 2011, there is currently no evidence of an increased incidence of thyroid cancer. Ultrasonography screening in these individuals detected a number of thyroid cancers that are probably not related to the accident. Because thyroid cancer is frequent, studies have been carried out to distinguish radiation-induced from their sporadic counterparts, and genomic signatures might be helpful.

Conclusions

The consequences of the Chernobyl accident clearly demonstrate that populations living nearby a nuclear power plant should be protected in case of accident by sheltering, food restrictions and prophylaxis of thyroid irradiation by potassium iodine administration, if the predicted estimated dose to the thyroid gland of children might be >50 mGy. These countermeasures should be applied in priority to children, adolescents and pregnant women; they are safe and effective.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. United Nations Scientific Commission on the Effects of Atomic Radiation (UNSCEAR): UNSCEAR 2013 report—Vol. I https://www.unscear.org/docs/publications/2013/UNSCEAR_2013_Report_Vol.I

  2. R.W. Howell, B.W. Wessels, R. Loevinger, E.E. Watson, W.E. Bolch, A.B. Brill, N.D. Charkes, D.R. Fisher, M.T. Hays, J.S. Robertson, J.A. Siegel, S.R. Thomas, The MIRD perspective 1999. Medical Internal Radiation Dose Committee. J. Nucl. Med. 40, 3S–10S (1999)

    CAS  PubMed  Google Scholar 

  3. J.P. Christodouleas, R.D. Forrest, C.G. Ainsley, Z. Tochner, S.M. Hahn, E. Glatstein, Short-term and long-term health risks of nuclear-power-plant accidents. N. Engl. J. Med. 364, 2334–2341 (2011). https://doi.org/10.1056/NEJMra1103676

    CAS  Article  PubMed  Google Scholar 

  4. United Nations Scientific Commission on the Effects of Atomic Radiation (UNSCEAR) 2008 report—Vol. I: sources. https://www.unscear.org/unscear/en/publications/2008_1.html

  5. United Nations Scientific Commission on the Effects of Atomic Radiation (UNSCEAR) 2013 report—Vol. II. https://www.unscear.org/unscear/en/publications/2013_2.html

  6. WHO 2016: World health statistics 2016: monitoring health for the SDGs, sustainable development goals. (2016). file:///Users/sc157197/Desktop/9789241565264_eng.pdf

  7. United Nations Scientific Commission on the Effects of Atomic Radiation (UNSCEAR) 2008 report—Vol. II: effects. https://www.unscear.org/unscear/en/publications/2008_2.html

  8. V.V. Chumak, Physical dosimetry of chernobyl cleanup workers. Health Physics. 93, 452–461 (2007). https://doi.org/10.1097/01.HP.0000278842.39156.93

  9. United Nations, United Nations: sources and effects of ionizing radiation, UNSCEAR 2008 Report (United Nations, 2011). https://www.unscear.org/docs/publications/2011/UNSCEAR_2011

  10. D.L. Preston, E. Ron, S. Tokuoka, S. Funamoto, N. Nishi, M. Soda, K. Mabuchi, K. Kodama, Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 168, 1–64 (2007). https://doi.org/10.1667/RR0763.1

    CAS  Article  PubMed  Google Scholar 

  11. E. Ostroumova, M. Hatch, A. Brenner, E. Nadyrov, I. Veyalkin, O. Polyanskaya, V. Yauseyenka, S. Polyakov, L. Levin, L. Zablotska, A. Rozhko, K. Mabuchi, Non-thyroid cancer incidence in Belarusian residents exposed to Chernobyl fallout in childhood and adolescence: standardized Incidence Ratio analysis, 1997–2011. Environ. Res. 147, 44–49 (2016). https://doi.org/10.1016/j.envres.2016.01.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. L.N. Astakhova, L.R. Anspaugh, G.W. Beebe, A. Bouville, V.V. Drozdovitch, V. Garber, Y.I. Gavrilin, V.T. Khrouch, A.V. Kuvshinnikov, Y.N. Kuzmenkov, V.P. Minenko, K.V. Moschik, A.S. Nalivko, J. Robbins, E.V. Shemiakina, S. Shinkarev, S.I. Tochitskaya, M.A. Waclawiw, Chernobyl-related thyroid cancer in children of Belarus: a case-control study. Radiat. Res. 150, 349–356 (1998)

    CAS  Article  Google Scholar 

  13. M.D. Tronko, G.R. Howe, T.I. Bogdanova, A.C. Bouville, O.V. Epstein, A.B. Brill, I.A. Likhtarev, D.J. Fink, V.V. Markov, E. Greenebaum, V.A. Olijnyk, I.J. Masnyk, V.M. Shpak, R.J. McConnell, V.P. Tereshchenko, J. Robbins, O.V. Zvinchuk, L.B. Zablotska, M. Hatch, N.K. Luckyanov, E. Ron, T.L. Thomas, P.G. Voilleque, G.W. Beebe, A cohort study of thyroid cancer and other thyroid diseases after the chornobyl accident: thyroid cancer in Ukraine detected during first screening. J. Natl. Cancer Inst. 98, 897–903 (2006). https://doi.org/10.1093/jnci/djj244

    Article  PubMed  Google Scholar 

  14. V.S. Kazakov, E.P. Demidchik, L.N. Astakhova, Thyroid cancer after Chernobyl. Nature 359, 21–21 (1992). https://doi.org/10.1038/359021a0

    CAS  Article  PubMed  Google Scholar 

  15. K. Baverstock, B. Egloff, A. Pinchera, C. Ruchti, D. Williams, Thyroid cancer after Chernobyl. Nature 359, 21–22 (1992). https://doi.org/10.1038/359021b0

    CAS  Article  PubMed  Google Scholar 

  16. E. Ron, Thyroid cancer incidence among people living in areas contaminated by radiation from the Chernobyl accident. Health Phys. 93, 502–511 (2007). https://doi.org/10.1097/01.HP.0000279018.93081.29

    CAS  Article  PubMed  Google Scholar 

  17. M.M. Fuzik, A.Y. Prysyazhnyuk, Y. Shibata, A.Y. Romanenko, Z.P. Fedorenko, N.A. Gudzenko, L.O. Gulak, N.K. Trotsyuk, Y.L. Goroh, O.M. Khukhrianska, O.V. Sumkina, V.A. Saenko, S. Yamashita, Age and gender patterns of thyroid cancer incidence in Ukraine depending on thyroid radiation doses from radioactive iodine exposure after the Chornobyl NPP accident. Probl. Radiac. Med. Radiobiol. 144–155 (2013). PMID: 25191719

  18. P.W. Dickman, L.-E. Holm, G. Lundell, J.D. Boice, P. Hall, Thyroid cancer risk after thyroid examination with 131I: a population-based cohort study in Sweden. Int. J. Cancer 106, 580–587 (2003). https://doi.org/10.1002/ijc.11258

    CAS  Article  PubMed  Google Scholar 

  19. B. Sinnott, E. Ron, A.B. Schneider, Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocr. Rev. 31, 756–773 (2010). https://doi.org/10.1210/er.2010-0003

    Article  PubMed  PubMed Central  Google Scholar 

  20. E. Ron, J.H. Lubin, R.E. Shore, K. Mabuchi, B. Modan, L.M. Pottern, A.B. Schneider, M.A. Tucker, J.D. Boice, Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. 1995. Radiat. Res. 178, AV43–AV60 (2012). https://doi.org/10.1667/rrav05.1

    CAS  Article  PubMed  Google Scholar 

  21. E. Cardis, A. Kesminiene, V. Ivanov, I. Malakhova, Y. Shibata, V. Khrouch, V. Drozdovitch, E. Maceika, I. Zvonova, O. Vlassov, A. Bouville, G. Goulko, M. Hoshi, A. Abrosimov, J. Anoshko, L. Astakhova, S. Chekin, E. Demidchik, R. Galanti, M. Ito, E. Korobova, E. Lushnikov, M. Maksioutov, V. Masyakin, A. Nerovnia, V. Parshin, E. Parshkov, N. Piliptsevich, A. Pinchera, S. Polyakov, N. Shabeka, E. Suonio, V. Tenet, A. Tsyb, S. Yamashita, D. Williams, Risk of thyroid cancer after exposure to 131I in childhood. J. Natl. Cancer Inst. 97, 724–732 (2005). https://doi.org/10.1093/jnci/dji129

    Article  PubMed  Google Scholar 

  22. L.B. Zablotska, E. Ron, A.V. Rozhko, M. Hatch, O.N. Polyanskaya, A.V. Brenner, J. Lubin, G.N. Romanov, R.J. McConnell, P. O’Kane, V.V. Evseenko, V.V. Drozdovitch, N. Luckyanov, V.F. Minenko, A. Bouville, V.B. Masyakin, Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. Br. J. Cancer 104, 181–187 (2011). https://doi.org/10.1038/sj.bjc.6605967

    CAS  Article  PubMed  Google Scholar 

  23. A.V. Brenner, M.D. Tronko, M. Hatch, T.I. Bogdanova, V.A. Oliynik, J.H. Lubin, L.B. Zablotska, V.P. Tereschenko, R.J. McConnell, G.A. Zamotaeva, P. O’Kane, A.C. Bouville, L.V. Chaykovskaya, E. Greenebaum, I.P. Paster, V.M. Shpak, E. Ron, I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident. Environ. Health Perspect. 119, 933–939 (2011). https://doi.org/10.1289/ehp.1002674

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. V.K. Ivanov, V.V. Kashcheev, S.Y. Chekin, M.A. Maksioutov, K.A. Tumanov, O.K. Vlasov, N.V. Shchukina, A.F. Tsyb, Radiation-epidemiological studies of thyroid cancer incidence in Russia after the Chernobyl accident (estimation of radiation risks, 1991-2008 follow-up period). Radiat. Prot. Dosim. 151, 489–499 (2012). https://doi.org/10.1093/rpd/ncs019

    CAS  Article  Google Scholar 

  25. E.K. Cahoon, E.A. Nadyrov, O.N. Polyanskaya, V.V. Yauseyenka, I.V. Veyalkin, T.I. Yeudachkova, T.I. Maskvicheva, V.F. Minenko, W. Liu, V. Drozdovitch, K. Mabuchi, M.P. Little, L.B. Zablotska, R.J. McConnell, M. Hatch, K.O. Peters, A.V. Rozhko, A.V. Brenner, Risk of thyroid nodules in residents of Belarus exposed to Chernobyl fallout as children and adolescents. J. Clin. Endocrinol. Metab. 102, 2207–2217 (2017). https://doi.org/10.1210/jc.2016-3842

    Article  PubMed  PubMed Central  Google Scholar 

  26. J.H. Lubin, M.J. Adams, R. Shore, E. Holmberg, A.B. Schneider, M.M. Hawkins, L.L. Robison, P.D. Inskip, M. Lundell, R. Johansson, R.A. Kleinerman, F. de Vathaire, L. Damber, S. Sadetzki, M. Tucker, R. Sakata, L.H.S. Veiga, Thyroid cancer following childhood low-dose radiation exposure: a pooled analysis of nine cohorts. J. Clin. Endocrinol. Metab. 102, 2575–2583 (2017). https://doi.org/10.1210/jc.2016-3529

    Article  PubMed  PubMed Central  Google Scholar 

  27. L.H.S. Veiga, E. Holmberg, H. Anderson, L. Pottern, S. Sadetzki, M.J. Adams, R. Sakata, A.B. Schneider, P. Inskip, P. Bhatti, R. Johansson, G. Neta, R. Shore, F. de Vathaire, L. Damber, R. Kleinerman, M.M. Hawkins, M. Tucker, M. Lundell, J.H. Lubin, Thyroid cancer after childhood exposure to external radiation: an updated pooled analysis of 12 studies. Radiat. Res. 185, 473–484 (2016). https://doi.org/10.1667/RR14213.1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. J. Nauman, J. Wolff, Iodide prophylaxis in Poland after the Chernobyl reactor accident: benefits and risks. Am. J. Med. 94, 524–532 (1993). https://doi.org/10.1016/0002-9343(93)90089-8

    Article  PubMed  Google Scholar 

  29. S. Vaccarella, S. Franceschi, F. Bray, C.P. Wild, M. Plummer, L. Dal Maso, Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N. Engl. J. Med. 375, 614–617 (2016). https://doi.org/10.1056/NEJMp1604412

    Article  PubMed  Google Scholar 

  30. M. Li, L.D. Maso, S. Vaccarella, Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diabetes Endocrinol. 8, 468–470 (2020). https://doi.org/10.1016/S2213-8587(20)30115-7

    Article  PubMed  Google Scholar 

  31. Fukushima, https://www.unscear.org/unscear/fr/fukushima.html

  32. K. Tanigawa, Y. Hosoi, N. Hirohashi, Y. Iwasaki, K. Kamiya, Loss of life after evacuation: lessons learned from the Fukushima accident. Lancet 379, 889–891 (2012). https://doi.org/10.1016/S0140-6736(12)60384-5

    Article  PubMed  Google Scholar 

  33. S. Nomura, S. Gilmour, M. Tsubokura, D. Yoneoka, A. Sugimoto, T. Oikawa, M. Kami, K. Shibuya, Mortality risk amongst nursing home residents evacuated after the Fukushima nuclear accident: a retrospective cohort study. PLoS ONE 8, e60192 (2013). https://doi.org/10.1371/journal.pone.0060192

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. W. Zheng, H. Yokomichi, H. Matsubara, M. Ishikuro, M. Kikuya, T. Isojima, S. Yokoya, T. Tanaka, N. Kato, S. Chida, A. Ono, M. Hosoya, S. Tanaka, S. Kuriyama, S. Kure, Z. Yamagata, Longitudinal changes in body mass index of children affected by the Great East Japan Earthquake. Int J. Obes. 41, 606–612 (2017). https://doi.org/10.1038/ijo.2017.6

    CAS  Article  Google Scholar 

  35. M. Orui, Y. Kuroda, S. Yasumura, Suicide rates and mental health measures after the lifting of the evacuation orders following the Fukushima Daiichi Nuclear Power Plant accident: a practical report developed in collaboration with the local municipality. Nihon Koshu Eisei Zasshi. 66, 407–416 (2019). https://doi.org/10.11236/jph.66.8_407

    Article  PubMed  Google Scholar 

  36. I. Korsakissok, A. Mathieu, D. Didier, Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident: a local-scale simulation and sensitivity study. Atmos. Environ. 70, 267–279 (2013). https://doi.org/10.1016/j.atmosenv.2013.01.002

    CAS  Article  Google Scholar 

  37. M. Tsubokura, M. Murakami, S. Nomura, T. Morita, Y. Nishikawa, C. Leppold, S. Kato, M. Kami, Individual external doses below the lowest reference level of 1 mSv per year five years after the 2011 Fukushima nuclear accident among all children in Soma City. PLoS ONE 12, e0172305 (2017). https://doi.org/10.1371/journal.pone.0172305

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. S. Nomura, H. Sakamoto, M.K. Sugai, H. Nakamura, K. Maruyama-Sakurai, S. Lee, A. Ishizuka, K. Shibuya, Tracking Japan’s development assistance for health, 2012-2016. Glob. Health 16, 32 (2020). https://doi.org/10.1186/s12992-020-00559-2

    Article  Google Scholar 

  39. M. Miyazaki, A. Ohtsuru, T. Ishikawa, An overview of internal dose estimation using whole-body counters in Fukushima Prefecture. Fukushima J. Med Sci. 60, 95–100 (2014). https://doi.org/10.5387/fms.2014-10

    Article  PubMed  Google Scholar 

  40. R.S. Hayano, M. Tsubokura, M. Miyazaki, A. Ozaki, Y. Shimada, T. Kambe, T. Nemoto, T. Oikawa, Y. Kanazawa, M. Nihei, Y. Sakuma, H. Shimmura, J. Akiyama, M. Tokiwa, Whole-body counter surveys of over 2700 babies and small children in and around Fukushima Prefecture 33 to 49 months after the Fukushima Daiichi NPP accident. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 91, 440–446 (2015). https://doi.org/10.2183/pjab.91.440

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. F. Pacini, T. Vorontsova, E.P. Demidchik, E. Molinaro, L. Agate, C. Romei, E. Shavrova, E.D. Cherstvoy, Y. Ivashkevitch, E. Kuchinskaya, M. Schlumberger, G. Ronga, M. Filesi, A. Pinchera, Post-Chernobyl thyroid carcinoma in Belarus children and adolescents: comparison with naturally occurring thyroid carcinoma in Italy and France. J. Clin. Endocrinol. Metab. 82, 3563–3569 (1997). https://doi.org/10.1210/jcem.82.11.4367

    CAS  Article  PubMed  Google Scholar 

  42. A. Ohtsuru, S. Midorikawa, T. Ohira, S. Suzuki, H. Takahashi, M. Murakami, H. Shimura, T. Matsuzuka, S. Yasumura, S.-I. Suzuki, S. Yokoya, Y. Hashimoto, A. Sakai, H. Ohto, S. Yamashita, K. Tanigawa, K. Kamiya, Incidence of thyroid cancer among children and young adults in Fukushima, Japan, screened with 2 rounds of ultrasonography within 5 years of the 2011 Fukushima Daiichi Nuclear Power Station Accident. JAMA Otolaryngol. Head. Neck Surg. 145, 4–11 (2019). https://doi.org/10.1001/jamaoto.2018.3121

    Article  PubMed  Google Scholar 

  43. T. Ohira, H. Shimura, F. Hayashi, M. Nagao, S. Yasumura, H. Takahashi, S. Suzuki, T. Matsuzuka, S. Suzuki, M. Iwadate, T. Ishikawa, A. Sakai, S. Suzuki, K.E. Nollet, S. Yokoya, H. Ohto, K. Kamiya; Fukushima Health Management Survey Group, Absorbed radiation doses in the thyroid as estimated by UNSCEAR and subsequent risk of childhood thyroid cancer following the Great East Japan Earthquake. J. Radiat. Res. 61, 243–248 (2020). https://doi.org/10.1093/jrr/rrz104

    Article  PubMed  PubMed Central  Google Scholar 

  44. N. Mitsutake, T. Fukushima, M. Matsuse, T. Rogounovitch, V. Saenko, S. Uchino, M. Ito, K. Suzuki, S. Suzuki, S. Yamashita, BRAF(V600E) mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl. Sci. Rep. 5, 16976 (2015). https://doi.org/10.1038/srep16976

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. S. Midorikawa, S. Suzuki, A. Ohtsuru, After Fukushima: addressing anxiety. Science 352, 666–667 (2016). https://doi.org/10.1126/science.352.6286.666-c

    CAS  Article  PubMed  Google Scholar 

  46. V.S. Perkel, M.H. Gail, J. Lubin, D.Y. Pee, R. Weinstein, E. Shore-Freedman, A.B. Schneider, Radiation-induced thyroid neoplasms: evidence for familial susceptibility factors. J. Clin. Endocrinol. Metab. 66, 1316–1322 (1988). https://doi.org/10.1210/jcem-66-6-1316

    CAS  Article  PubMed  Google Scholar 

  47. M. Zidane, J.-B. Cazier, S. Chevillard, C. Ory, M. Schlumberger, C. Dupuy, J.-F. Deleuze, A. Boland, N. Haddy, F. Lesueur, F. de Vathaire, Genetic susceptibility to radiation-related differentiated thyroid cancers: a systematic review of literature. Endocr. Relat. Cancer 26, R583–R596 (2019). https://doi.org/10.1530/ERC-19-0321

    CAS  Article  PubMed  Google Scholar 

  48. M. Takahashi, V.A. Saenko, T.I. Rogounovitch, T. Kawaguchi, V.M. Drozd, H. Takigawa-Imamura, N.M. Akulevich, C. Ratanajaraya, N. Mitsutake, N. Takamura, L.I. Danilova, M.L. Lushchik, Y.E. Demidchik, S. Heath, R. Yamada, M. Lathrop, F. Matsuda, S. Yamashita, The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl. Hum. Mol. Genet. 19, 2516–2523 (2010). https://doi.org/10.1093/hmg/ddq123

    CAS  Article  PubMed  Google Scholar 

  49. F. Damiola, G. Byrnes, M. Moissonnier, M. Pertesi, I. Deltour, A. Fillon, F. Le Calvez-Kelm, V. Tenet, S. McKay-Chopin, J.D.McKay, I. Malakhova, V. Masyakin, E. Cardis, F. Lesueur, A. Kesminiene,Contribution of ATM and FOXE1 (TTF2) to risk of papillary thyroid carcinoma in Belarusian children exposed to radiation. Int J. Cancer 134, 1659–1668 (2014). https://doi.org/10.1002/ijc.28483

    CAS  Article  PubMed  Google Scholar 

  50. S. Maillard, F. Damiola, E. Clero, M. Pertesi, N. Robinot, F. Rachedi, J.L. Boissin, J. Sebbag, L. Shan, F. Bost-Bezeaud, P. Petitdidier, F. Doyon, C. Xhaard, C. Rubino, H. Blanche, V. Drozdovitch, F. Lesueur, F. de Vathaire, Common variants at 9q22.33, 14q13.3, and ATM loci, and risk of differentiated thyroid cancer in the French Polynesian population. PLoS ONE 10, e0123700 (2015). https://doi.org/10.1371/journal.pone.0123700

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. D. Williams, Radiation carcinogenesis: lessons from Chernobyl. Oncogene 27(Suppl 2), S9–S18 (2008). https://doi.org/10.1038/onc.2009.349

    CAS  Article  PubMed  Google Scholar 

  52. J.C. Ricarte-Filho, S. Li, M.E.R. Garcia-Rendueles, C. Montero-Conde, F. Voza, J.A. Knauf, A. Heguy, A. Viale, T. Bogdanova, G.A. Thomas, C.E. Mason, J.A. Fagin, Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J. Clin. Investig. 123, 4935–4944 (2013). https://doi.org/10.1172/JCI69766

    CAS  Article  PubMed  Google Scholar 

  53. R. Ameziane-El-Hassani, M. Boufraqech, O. Lagente-Chevallier, U. Weyemi, M. Talbot, D. Métivier, F. Courtin, J.M. Bidart, M. El Mzibri, M. Schlumberger, C. Dupuy, Role of H2O2 in RET/PTC1 chromosomal rearrangement produced by ionizing radiation in human thyroid cells. Cancer Res. 70, 4123–4132 (2010). https://doi.org/10.1158/CAN-09-4336

    CAS  Article  PubMed  Google Scholar 

  54. B. Pekova, V. Sykorova, S. Dvorakova, E. Vaclavikova, J. Moravcova, R. Katra, J. Astl, P. Vlcek, D. Kodetova, J. Vcelak, B. Bendlova, RET, NTRK, ALK, BRAF and MET fusions in a large cohort of pediatric papillary thyroid carcinomas. Thyroid. (2020). https://doi.org/10.1089/thy.2019.0802

  55. A.S. Alzahrani, M. Alswailem, A.A. Alswailem, H. Al-Hindi, E. Goljan, N. Alsudairy, M. Abouelhoda, Genetic alterations in pediatric thyroid cancer using a comprehensive childhood cancer gene panel. J. Clin. Endocrinol. Metab. (2020). https://doi.org/10.1210/clinem/dgaa389

  56. C. Ory, N. Ugolin, C. Levalois, L. Lacroix, B. Caillou, J.-M. Bidart, M. Schlumberger, I. Diallo, F. de Vathaire, P. Hofman, J. Santini, B. Malfoy, S. Chevillard, Gene expression signature discriminates sporadic from post-radiotherapy-induced thyroid tumors. Endocr.-Relat. Cancer 18, 193–206 (2011). https://doi.org/10.1677/ERC-10-0205

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. N. Ugolin, C. Ory, E. Lefevre, N. Benhabiles, P. Hofman, M. Schlumberger, S. Chevillard, Strategy to find molecular signatures in a small series of rare cancers: validation for radiation-induced breast and thyroid tumors. PLoS ONE 6, e23581 (2011). https://doi.org/10.1371/journal.pone.0023581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. V. Detours, L. Delys, F. Libert, D. Weiss Solís, T. Bogdanova, J.E. Dumont, B. Franc, G. Thomas, C. Maenhaut, Genome-wide gene expression profiling suggests distinct radiation susceptibilities in sporadic and post-Chernobyl papillary thyroid cancers. Br. J. Cancer 97, 818–825 (2007). https://doi.org/10.1038/sj.bjc.6603938

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. M. Port, C. Boltze, Y. Wang, B. Röper, V. Meineke, M. Abend, A radiation-induced gene signature distinguishes post-Chernobyl from sporadic papillary thyroid cancers. Radiat. Res. 168, 639–649 (2007). https://doi.org/10.1667/RR0968.1

    CAS  Article  PubMed  Google Scholar 

  60. L. Stein, J. Rothschild, J. Luce, J.K. Cowell, G. Thomas, T.I. Bogdanova, M.D. Tronko, L. Hawthorn, Copy number and gene expression alterations in radiation-induced papillary thyroid carcinoma from chernobyl pediatric patients. Thyroid. Off. J. Am. Thyroid. Assoc. 20, 475–487 (2010). https://doi.org/10.1089/thy.2009.0008

    CAS  Article  Google Scholar 

  61. C. Ory, N. Ugolin, P. Hofman, M. Schlumberger, I.A. Likhtarev, S. Chevillard, Comparison of transcriptomic signature of post-Chernobyl and postradiotherapy thyroid tumors. Thyroid. Off. J. Am. Thyroid. Assoc. 23, 1390–1400 (2013). https://doi.org/10.1089/thy.2012.0318

    Article  Google Scholar 

  62. M. Abend, R.M. Pfeiffer, C. Ruf, M. Hatch, T.I. Bogdanova, M.D. Tronko, J. Hartmann, V. Meineke, K. Mabuchi, A.V. Brenner, Iodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers. Br. J. Cancer 109, 2286–2294 (2013). https://doi.org/10.1038/bjc.2013.574

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. C. Sermage-Faure, D. Laurier, S. Goujon-Bellec, M. Chartier, A. Guyot-Goubin, J. Rudant, D. Hémon, J. Clavel, Childhood leukemia around French nuclear power plants-the Geocap study, 2002-2007. Int. J. Cancer 131, E769–E780 (2012). https://doi.org/10.1002/ijc.27425

    CAS  Article  PubMed  Google Scholar 

  64. P.B. Zanzonico, D.V. Becker, Effects of time of administration and dietary iodine levels on potassium iodide (KI) blockade of thyroid irradiation by 131I from radioactive fallout. Health Phys. 78, 660–667 (2000). https://doi.org/10.1097/00004032-200006000-00008

    CAS  Article  PubMed  Google Scholar 

  65. Journal Officiel de la République Française (JORF), n°136 du 14 juin 2006 page 8946 texte n° 2 LOI n° 2006-686 du 13 juin 2006 relative à la transparence et à la sécurité

  66. B. Le Guen, L. Stricker, M. Schlumberger, Distributing KI pills to minimize thyroid radiation exposure in case of a nuclear accident in France. Nat. Clin. Pract. Endocrinol. Metab. 3, 611–611 (2007). https://doi.org/10.1038/ncpendmet0593

    Article  PubMed  Google Scholar 

  67. L. Vydro, C.M. Kitahara, J.H. Lubin, A.B. Schneider, D.V. Mihailescu, Among individuals irradiated for benign conditions in childhood, developing thyroid cancer does not affect all-cause survival. Thyroid. Off. J. Am. Thyroid. Assoc. 30, 389–395 (2020). https://doi.org/10.1089/thy.2019.0439

    Article  Google Scholar 

  68. B. Le Guen, L. Stricker, M. Schlumberger, Distributing KI pills to minimize thyroid radiation exposure in case of a nuclear accident in France. Nat. Clin. Pract. Endocrinol. Metab. 3, 611–611 (2007). https://doi.org/10.1038/ncpendmet0593

    Article  PubMed  Google Scholar 

  69. S. Vaccarella, L. Dal Maso, M. Laversanne, F. Bray, M. Plummer, S. Franceschi, The impact of diagnostic changes on the rise in thyroid cancer incidence: a population-based study in selected high-resource countries. Thyroid. Off. J. Am. Thyroid. Assoc. 25, 1127–1136 (2015). https://doi.org/10.1089/thy.2015.0116

    Article  Google Scholar 

  70. B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid 26, 1–133 (2016). https://doi.org/10.1089/thy.2015.0020

    Article  PubMed  PubMed Central  Google Scholar 

  71. S.C. Clement, L.C.M. Kremer, F.A. Verburg, J.H. Simmons, M. Goldfarb, R.P. Peeters, E.K. Alexander, E. Bardi, E. Brignardello, L.S. Constine, C.A. Dinauer, V.M. Drozd, F. Felicetti, E. Frey, A. Heinzel, M.M. van den Heuvel-Eibrink, S.A. Huang, T.P. Links, K. Lorenz, R.L. Mulder, S.J. Neggers, E.J.M. Nieveen van Dijkum, K.C. Oeffinger, R.R. van Rijn, S.A. Rivkees, C.M. Ronckers, A.B. Schneider, R. Skinner, J.D. Wasserman, T. Wynn, M.M. Hudson, P.C. Nathan, H.M. van Santen, Balancing the benefits and harms of thyroid cancer surveillance in survivors of Childhood, adolescent and young adult cancer: recommendations from the international Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Cancer Treat. Rev. 63, 28–39 (2018). https://doi.org/10.1016/j.ctrv.2017.11.005

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schlumberger.

Ethics declarations

Conflict of interest

B.L.G. is employee at Electricité de France. F.D.V., C.O., and S.C. received research supports from Electricité de France. M.S. is consultant for Electricité de France.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ory, C., Leboulleux, S., Salvatore, D. et al. Consequences of atmospheric contamination by radioiodine: the Chernobyl and Fukushima accidents. Endocrine 71, 298–309 (2021). https://doi.org/10.1007/s12020-020-02498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02498-9

Keywords

  • Chernobyl
  • Fukushima
  • Radioactive iodine
  • Thyroid cancer