Skip to main content
Log in

Thioredoxin-interacting protein: a critical link between autophagy disorders and pancreatic β-cell dysfunction

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Thioredoxin-interacting protein (TXNIP) is a known important regulatory protein of islet β-cell biology and function, but the detailed mechanism is not clear. Autophagy plays a pivotal role in maintaining cellular homoeostasis. This study aimed to elucidate the influence of TXNIP on the autophagy of β-cell. In this study, C57BL/6 mice and TXNIP−/− mice were fed with a standard diet (SD) or a high-fat and high-sugar diet (HFSD), and then we analysed biochemical and autophagy related indexes in the mice. We infected MIN6 cells with LV-TXNIP and siRNA TXNIP, then the cells were treated with free fatty acid (FFA), autophagic activator rapamycin (RAP), inhibitors of autophagy chloroquine (CQ) and bafilomycin A1(BAF), finally, we examined the changes of autophagy in MIN6 cells. The results showed that HFSD led to β-cell dysfunction and autophagy dysregulation, which was improved by TXNIP knockout in mice. In vitro experiments, TXNIP gene silencing enhanced LC3B-I conversion to LC3B-II, reduced the protein level of P62, decreased autophagosome accumulation induced by FFA treatment, increased the glucose-stimulated insulin secretion (GSIS) and autophagic flux inhibited by treatment with CQ. TXNIP overexpression induced upregulation of LC3B-I, LC3B-II and P62, accentuating the increase in autophagy and organelle destruction induced by FFA, and exacerbated the effect of BAF on the accumulation of autophagy proteins. Increasing TXNIP levels reduced GSIS, which was reversed by treatment with RAP. In summary, our study suggested that TXNIP is a critical link between autophagy disorders and pancreatic β-cell dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.S. Remedi, C. Emfinger, Pancreatic beta-cell identity in diabetes. Diabetes Obes. Metab. 18(Suppl 1), 110–116 (2016). https://doi.org/10.1111/dom.12727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S.U. Mir, N.M. George, L. Zahoor, R. Harms, Z. Guinn, N.E. Sarvetnick, Inhibition of autophagic turnover in beta-cells by fatty acids and glucose leads to apoptotic cell death. J. Biol. Chem. 290(10), 6071–6085 (2015). https://doi.org/10.1074/jbc.M114.605345

    Article  CAS  PubMed  Google Scholar 

  3. A. Shalev, Minireview: thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell. Mol. Endocrinol. 28(8), 1211–1220 (2014). https://doi.org/10.1210/me.2014-1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Chen, G. Saxena, I.N. Mungrue, A.J. Lusis, A. Shalev, Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes 57(4), 938–944 (2008). https://doi.org/10.2337/db07-0715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. P.A. Gerber, G.A. Rutter, The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal. 26(10), 501–518 (2017). https://doi.org/10.1089/ars.2016.6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. N.M. Alhawiti, S. Al Mahri, M.A. Aziz, S.S. Malik, S. Mohammad, TXNIP in metabolic regulation: physiological role and therapeutic outlook. Curr. Drug Targets 18(9), 1095–1103 (2017). https://doi.org/10.2174/1389450118666170130145514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J. Yang, R. Zhou, Z. Ma, Autophagy and energy metabolism. Adv. Exp. Med Biol. 1206, 329–357 (2019). https://doi.org/10.1007/978-981-15-0602-4_16

    Article  CAS  PubMed  Google Scholar 

  8. D.C. Rubinsztein, G. Marino, G. Kroemer, Autophagy and aging. Cell 146(5), 682–695 (2011). https://doi.org/10.1016/j.cell.2011.07.030

    Article  CAS  PubMed  Google Scholar 

  9. M. Masini, M. Bugliani, R. Lupi, S. del Guerra, U. Boggi, F. Filipponi, L. Marselli, P. Masiello, P. Marchetti, Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52(6), 1083–1086 (2009). https://doi.org/10.1007/s00125-009-1347-2

    Article  CAS  Google Scholar 

  10. W. Quan, K.Y. Hur, Y. Lim, S.H. Oh, J.C. Lee, K.H. Kim, G.H. Kim, S.W. Kim, H.L. Kim, M.K. Lee, K.W. Kim, J. Kim, M. Komatsu, M.S. Lee, Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55(2), 392–403 (2012). https://doi.org/10.1007/s00125-011-2350-y

    Article  CAS  PubMed  Google Scholar 

  11. C. Huang, Y. Zhang, D.J. Kelly, C.Y. Tan, A. Gill, D. Cheng, F. Braet, J.S. Park, C.M. Sue, C.A. Pollock, X.M. Chen, Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Sci. Rep. 6, 29196 (2016). https://doi.org/10.1038/srep29196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. C. Huang, M.Z. Lin, D. Cheng, F. Braet, C.A. Pollock, X.M. Chen, Thioredoxin-interacting protein mediates dysfunction of tubular autophagy in diabetic kidneys through inhibiting autophagic flux. Lab Investig. 94(3), 309–320 (2014). https://doi.org/10.1038/labinvest.2014.2

    Article  CAS  PubMed  Google Scholar 

  13. L.P., Singh, Thioredoxin interacting protein (TXNIP) and pathogenesis of diabetic retinopathy. J. Clin. Exp. Ophthalmol. 4 (2013). https://doi.org/10.4172/2155-9570.1000287

  14. L. P. Singh, T. S. Devi, T. Yumnamcha, The role of Txnip in mitophagy dysregulation and inflammasome activation in diabetic retinopathy: a new perspective. JOJ Ophthalmol. 4(4) (2017). https://doi.org/10.19080/jojo.2017.04.555643

  15. J. Wang, J.J. Wang, W.F. Zhang, X.Y. Jiao, Role of autophagy in TXNIP overexpression-induced apoptosis of INS-1 islet cells. Sheng Li Xue Bao 69(4), 445–451 (2017)

    PubMed  Google Scholar 

  16. C. Ebato, T. Uchida, M. Arakawa, M. Komatsu, T. Ueno, K. Komiya, K. Azuma, T. Hirose, K. Tanaka, E. Kominami, R. Kawamori, Y. Fujitani, H. Watada, Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8(4), 325–332 (2008). https://doi.org/10.1016/j.cmet.2008.08.009

    Article  PubMed  Google Scholar 

  17. Q. Sheng, X. Xiao, K. Prasadan, C. Chen, Y. Ming, J. Fusco, N.N. Gangopadhyay, D. Ricks, G.K. Gittes, Autophagy protects pancreatic beta cell mass and function in the setting of a high-fat and high-glucose diet. Sci. Rep. 7(1), 16348 (2017). https://doi.org/10.1038/s41598-017-16485-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Yang, J. Dai, Y. Jia, L. Suo, S. Li, Y. Guo, H. Liu, L. Li, G. Yang, Overexpression of. juxtaposed with another zinc finger gene 1 reduces proinflammatory cytokine release via inhibition of stress-activated protein kinases and nuclear factor-kappaB. FEBS J. 281(14), 3193–3205 (2014). https://doi.org/10.1111/febs.12853

    Article  CAS  PubMed  Google Scholar 

  19. S.H. Jo, M.Y. Kim, J.M. Park, T.H. Kim, Y.H. Ahn, Txnip contributes to impaired glucose tolerance by upregulating the expression of genes involved in hepatic gluconeogenesis in mice. Diabetologia 56(12), 2723–2732 (2013). https://doi.org/10.1007/s00125-013-3050-6

    Article  CAS  PubMed  Google Scholar 

  20. J. Chen, S.T. Hui, F.M. Couto, I.N. Mungrue, D.B. Davis, A.D. Attie, A.J. Lusis, R.A. Davis, A. Shalev, Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J. 22(10), 3581–3594 (2008). https://doi.org/10.1096/fj.08-111690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Kim, Y.M. Lim, M.S. Lee, The role of autophagy in systemic metabolism and human-type diabetes. Mol. Cells 41(1), 11–17 (2018). https://doi.org/10.14348/molcells.2018.2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. E. Masson, S. Koren, F. Razik, H. Goldberg, E.P. Kwan, L. Sheu, H.Y. Gaisano, I.G. Fantus, High beta-cell mass prevents streptozotocin-induced diabetes in thioredoxin-interacting protein-deficient mice. Am. J. Physiol. Endocrinol. Metab. 296(6), E1251–E1261 (2009). https://doi.org/10.1152/ajpendo.90619.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. W.A. Chutkow, P. Patwari, J. Yoshioka, R.T. Lee, Thioredoxin-interacting protein (Txnip) is a critical regulator of hepatic glucose production. J. Biol. Chem. 283(4), 2397–2406 (2008). https://doi.org/10.1074/jbc.M708169200

    Article  CAS  PubMed  Google Scholar 

  24. M. Komatsu, Y. Ichimura, Physiological significance of selective degradation of p62 by autophagy. FEBS Lett. 584(7), 1374–1378 (2010). https://doi.org/10.1016/j.febslet.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  25. H.M. Ni, A. Bockus, A.L. Wozniak, K. Jones, S. Weinman, X.M. Yin, W.X. Ding, Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 7(2), 188–204 (2011). https://doi.org/10.4161/auto.7.2.14181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. G.L. Pearson, N. Mellett, K.Y. Chu, J. Cantley, A. Davenport, P. Bourbon, C.C. Cosner, P. Helquist, P.J. Meikle, T.J. Biden, Lysosomal acid lipase and lipophagy are constitutive negative regulators of glucose-stimulated insulin secretion from pancreatic beta cells. Diabetologia 57(1), 129–139 (2014). https://doi.org/10.1007/s00125-013-3083-x

    Article  CAS  PubMed  Google Scholar 

  27. E. Yoshihara, S. Fujimoto, N. Inagaki, K. Okawa, S. Masaki, J. Yodoi, H. Masutani, Disruption of TBP-2 ameliorates insulin sensitivity and secretion without affecting obesity. Nat. Commun. 1, 127 (2010). https://doi.org/10.1038/ncomms1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. G. Las, S.B. Serada, J.D. Wikstrom, G. Twig, O.S. Shirihai, Fatty acids suppress autophagic turnover in β-cells. J. Biol. Chem. 286(49), 42534–42544 (2011). https://doi.org/10.1074/jbc.M111.242412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. Janikiewicz, K. Hanzelka, A. Dziewulska, K. Kozinski, P. Dobrzyn, T. Bernas, A. Dobrzyn, Inhibition of SCD1 impairs palmitate-derived autophagy at the step of autophagosome-lysosome fusion in pancreatic β-cells. J. Lipid Res. 56(10), 1901–1911 (2015). https://doi.org/10.1194/jlr.M059980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. H. Watada, Y. Fujitani, Minireview: autophagy in pancreatic β-cells and its implication in diabetes. Mol. Endocrinol. 29(3), 338–348 (2015). https://doi.org/10.1210/me.2014-1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S. Elshaer, I. Mohamed, M. Coucha, S. Altantawi, W. Eldahshan, M. Bartasi, A. Shanab, R. Lorys, A. El-Remessy, Deletion of TXNIP mitigates high-fat diet-impaired angiogenesis and prevents inflammation in a mouse model of critical limb ischemia. Antioxidants 6(3) (2017). https://doi.org/10.3390/antiox6030047

  32. L. Thielen, A. Shalev, Diabetes pathogenic mechanisms and potential new therapies based upon a novel target called TXNIP. Curr. Opin. Endocrinol. Diabetes Obes. 25(2), 75–80 (2018). https://doi.org/10.1097/MED.0000000000000391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. W.A. Chutkow, A.L. Birkenfeld, J.D. Brown, H.Y. Lee, D.W. Frederick, J. Yoshioka, P. Patwari, R. Kursawe, S.W. Cushman, J. Plutzky, G.I. Shulman, V.T. Samuel, R.T. Lee, Deletion of the alpha-arrestin protein Txnip in mice promotes adiposity and adipogenesis while preserving insulin sensitivity. Diabetes 59(6), 1424–1434 (2010). https://doi.org/10.2337/db09-1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. Barth, D. Glick, K.F. Macleod, Autophagy: assays and artifacts. J. Pathol. 221(2), 117–124 (2010). https://doi.org/10.1002/path.2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. H. R. Pugsley, Assessing autophagic flux by measuring LC3, p62, and LAMP1 co-localization using multispectral imaging flow cytometry. J. Vis. Exp. (125) (2017). https://doi.org/10.3791/55637

  36. A. Danieli, S. Martens, p62-mediated phase separation at the intersection of the ubiquitin-proteasome system and autophagy. J. Cell Sci. 131(19) (2018). https://doi.org/10.1242/jcs.214304

  37. Y. Katsu-Jimenez, C. Vazquez-Calvo, C. Maffezzini, M. Halldin, X. Peng, C. Freyer, A. Wredenberg, A. Gimenez-Cassina, A. Wedell, E.S.J. Arner, Absence of TXNIP in humans leads to lactic acidosis and low serum methionine linked to deficient respiration on pyruvate. Diabetes 68(4), 709–723 (2019). https://doi.org/10.2337/db18-0557

    Article  CAS  PubMed  Google Scholar 

  38. X. He, Q. Ma, Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein. Mol. Pharm. 82(5), 887–897 (2012). https://doi.org/10.1124/mol.112.081133

    Article  CAS  Google Scholar 

  39. M.T. Diaz-Meco, J. Moscat, The atypical PKCs in inflammation: NF-kappaB and beyond. Immunol. Rev. 246(1), 154–167 (2012). https://doi.org/10.1111/j.1600-065X.2012.01093.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Y. Zhao, W. Song, Z. Wang, Z. Wang, X. Jin, J. Xu, L. Bai, Y. Li, J. Cui, L. Cai, Resveratrol attenuates testicular apoptosis in type 1 diabetic mice: role of Akt-mediated Nrf2 activation and p62-dependent Keap1 degradation. Redox Biol. 14, 609–617 (2018). https://doi.org/10.1016/j.redox.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  41. T. Jiang, B. Harder, M. Rojo de la Vega, P.K. Wong, E. Chapman, D.D. Zhang, p62 links autophagy and Nrf2 signaling. Free Radic. Biol. Med. 88(Pt B), 199–204 (2015). https://doi.org/10.1016/j.freeradbiomed.2015.06.014

  42. J.M., Lopes de Faria, D.A. Duarte, C. Montemurro, A. Papadimitriou, S.R. Consonni, J.B. Lopes de Faria, Defective autophagy in diabetic retinopathy. Investig. Opthalmol. Vis. Sci. 57(10) (2016). https://doi.org/10.1167/iovs.16-19197

  43. W. El-Assaad, J. Buteau, M.-L. Peyot, C. Nolan, R. Roduit, S. Hardy, E. Joly, G. Dbaibo, L. Rosenberg, M. Prentki, Saturated fatty acids synergize with elevated glucose to cause pancreatic β-cell death. Endocrinology 144(9), 4154–4163 (2003). https://doi.org/10.1210/en.2003-0410

    Article  CAS  PubMed  Google Scholar 

  44. S. Rani, J.,P. Mehta, N. Barron, P. Doolan, P.,B. Jeppesen, M.,O. Clynes, L. Driscoll, Decreasing Txnip mRNA and protein levels in pancreatic MIN6 cells reduces reactive oxygen species and restores glucose regulated insulin secretion. Cell Physiol. Biochem 25, 667–674 (2010). https://doi.org/10.1159/000315086

    Article  CAS  PubMed  Google Scholar 

  45. H.S. Jung, K.W. Chung, J. Won Kim, J. Kim, M. Komatsu, K. Tanaka, Y.H. Nguyen, T.M. Kang, K.H. Yoon, J.W. Kim, Y.T. Jeong, M.S. Han, M.K. Lee, K.W. Kim, J. Shin, M.S. Lee, Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 8(4), 318–324 (2008). https://doi.org/10.1016/j.cmet.2008.08.013

    Article  CAS  PubMed  Google Scholar 

  46. A. Bartolome, M. Kimura-Koyanagi, S. Asahara, C. Guillen, H. Inoue, K. Teruyama, S. Shimizu, A. Kanno, A. Garcia-Aguilar, M. Koike, Y. Uchiyama, M. Benito, T. Noda, Y. Kido, Pancreatic beta-cell failure mediated by mTORC1 hyperactivity and autophagic impairment. Diabetes 63(9), 2996–3008 (2014). https://doi.org/10.2337/db13-0970

    Article  PubMed  Google Scholar 

  47. A.D. Barlow, M.L. Nicholson, T.P. Herbert, Evidence for rapamycin toxicity in pancreatic beta-cells and a review of the underlying molecular mechanisms. Diabetes 62(8), 2674–2682 (2013). https://doi.org/10.2337/db13-0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Y. Zhang, S. He, X. Du, Y. Jiang, B. Tian, S. Xu, Rapamycin suppresses hypoxia/reoxygenation-induced islet injury by up-regulation of miR-21viaPI3K/Akt signalling pathway. Cell Prolif. 50(1) (2017). https://doi.org/10.1111/cpr.12306

  49. W. Duan, X. Yu, D. Ma, B. Yang, Y. Li, L. Huang, L. Liu, G. Chen, D. Xu, Y. Ding, Mesenchymal stem cells in combination with low-dose rapamycin significantly prolong islet allograft survival through induction of regulatory T cells. Biochem. Biophys. Res. Commun. 506(3), 619–625 (2018). https://doi.org/10.1016/j.bbrc.2018.10.070

    Article  CAS  PubMed  Google Scholar 

  50. J. Lin, A. Jiao, W. Lv, C. Zhang, Y. Shi, Z. Yang, N. Sun, X. Li, J. Zhang, Pentapeptide protects INS-1 cells from hIAPP-mediated apoptosis by enhancing autophagy through mTOR pathway. Front. Pharm. 10, 896 (2019). https://doi.org/10.3389/fphar.2019.00896

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by research grants from the National Natural Science Foundation of China (81370467).

Author contributions

W.Z.D. collected the data, interpreted the data and wrote the paper. D.F.L. designed the study, interpreted the data and edited the paper. X.F.G. designed the study and interpreted the data. Y.L., Z.Y.R. and W.Z.D. performed the experiments, interpreted the data and edited the paper. Q.R.H. edited the paper and performed some of the experiments. Y.J.J., Y.J.L. and W.W.Z. performed some of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianfeng Gan or Dongfang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were conducted in accordance with the rules of the Animal Ethics Committee of Chongqing Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Li, Y., Ren, Z. et al. Thioredoxin-interacting protein: a critical link between autophagy disorders and pancreatic β-cell dysfunction. Endocrine 70, 526–537 (2020). https://doi.org/10.1007/s12020-020-02471-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02471-6

Keywords

Navigation