Skip to main content
Log in

Mechanism of thyroid hormone signaling in skeletal muscle of aging mice

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background and aim

Skeletal muscle (SM) has been shown as a target of thyroid hormones (THs). However, the status of TH signaling in aged SM remains unclear. This study aimed to explore the mechanism of TH signaling in SM of aging mice.

Methods

Thirty C57BL/6J male mice were divided into 6-, 15- and 22-month (6, 15 and 22M) groups according to different age. Physical parameters were evaluated by analytical balance, grip strength test and histological analysis. Thyroid function was detected by enzyme-linked immunosorbent assay. TH signaling was compared among the three groups by real-time PCR and western blotting analysis.

Results

p16, p21, and p53 mRNA levels in SM increased in age-dependent manner. The muscle weight and strength decreased in 22M group compared to 6 and 15M groups. Concentrations of thyroid hormones, including free triiodothyronine (FT3), free thyroxine (FT4) and thyroid-stimulating hormone (TSH) in 22 M mice were not shown significant difference compared to 6M or 15M mice, although FT3 showed slightly decrease and TSH appeared a mild increase accompanying with age. mRNA levels of TH transporters, including MCT8 and MCT10, as well as iodothyronine deiodinase type 2 (DIO2) and type 3 (DIO3), were higher in 22M, while TH receptor α (TRα) mRNA and protein expression was lower in 22M, compared to the other groups. Type-I myosin heavy chain (MyHC I), MyHC IIx, and MyHC IIa were upregulated and Type-IIb MyHC (MyHC IIb) was downregulated in SM with advancing age.

Conclusions

TH signaling in SM changes with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.P. da Costa, R. Vitorino, G.M. Silva, C. Vogel, A.C. Duarte, T. Rocha-Santos, A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res. Rev. 29, 90–112 (2016). https://doi.org/10.1016/j.arr.2016.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  2. A.J. Cruz-Jentoft, G. Bahat, J. Bauer, Y. Boirie, O. Bruyere, T. Cederholm, C. Cooper, F. Landi, Y. Rolland, A.A. Sayer, S.M. Schneider, C.C. Sieber, E. Topinkova, M. Vandewoude, M. Visser, M. Zamboni, Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1), 16–31 (2019). https://doi.org/10.1093/ageing/afy169

    Article  PubMed  Google Scholar 

  3. M. Locquet, C. Beaudart, J. Petermans, J.Y. Reginster, O. Bruyere, EWGSOP2 versus EWGSOP1: impact on the prevalence of sarcopenia and its major health consequences. J. Am. Med. Dir. Assoc. 20(3), 384–385 (2019). https://doi.org/10.1016/j.jamda.2018.11.027

    Article  PubMed  Google Scholar 

  4. Y. Rolland, S. Czerwinski, G. Abellan Van Kan, J.E. Morley, M. Cesari, G. Onder, J. Woo, R. Baumgartner, F. Pillard, Y. Boirie, W.M. Chumlea, B. Vellas, Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging 12(7), 433–450 (2008). https://doi.org/10.1007/bf02982704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. W.R. Frontera, J. Ochala, Skeletal muscle: a brief review of structure and function. Calcif. Tissue Int. 96(3), 183–195 (2015). https://doi.org/10.1007/s00223-014-9915-y

    Article  CAS  PubMed  Google Scholar 

  6. S. Schiaffino, C. Reggiani, Fiber types in mammalian skeletal muscles. Physiol. Rev. 91(4), 1447–1531 (2011). https://doi.org/10.1152/physrev.00031.2010

    Article  CAS  PubMed  Google Scholar 

  7. F.F. Bloise, A. Cordeiro, T.M. Ortiga-Carvalho, Role of thyroid hormone in skeletal muscle physiology. J. Endocrinol. 236(1), R57–r68 (2018). https://doi.org/10.1530/joe-16-0611

    Article  CAS  PubMed  Google Scholar 

  8. W.S. Simonides, C. van Hardeveld, Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 18(2), 205–216 (2008). https://doi.org/10.1089/thy.2007.0256

    Article  CAS  PubMed  Google Scholar 

  9. G.A. Brent, Commentary on: “American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models,” Bianco et al. Thyroid 24(1), 1–2 (2014). https://doi.org/10.1089/thy.2013.0679

    Article  PubMed  PubMed Central  Google Scholar 

  10. A.C. Bianco, A. Dumitrescu, B. Gereben, M.O. Ribeiro, T.L. Fonseca, G.W. Fernandes, B. Bocco, Paradigms of dynamic control of thyroid hormone signaling. Endocr. Rev. 40(4), 1000–1047 (2019). https://doi.org/10.1210/er.2018-00275

    Article  PubMed  PubMed Central  Google Scholar 

  11. T. Kadoguchi, K. Shimada, T. Miyazaki, K. Kitamura, M. Kunimoto, T. Aikawa, Y. Sugita, S. Ouchi, T. Shiozawa, M. Yokoyama-Nishitani, K. Fukao, K. Miyosawa, K. Isoda, H. Daida, Promotion of oxidative stress is associated with mitochondrial dysfunction and muscle atrophy in aging mice. Geriatr. Gerontol. Int. 20(1), 78–84 (2020). https://doi.org/10.1111/ggi.13818

    Article  PubMed  Google Scholar 

  12. D. Zhang, Y. Li, S. Liu, Y.C. Wang, F. Guo, Q. Zhai, J. Jiang, H. Ying, microRNA and thyroid hormone signaling in cardiac and skeletal muscle. Cell Biosci. 7, 14 (2017). https://doi.org/10.1186/s13578-017-0141-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Sheng, D. Ma, Q. Zhou, L. Wang, M. Sun, S. Wang, H. Qi, J. Liu, G. Ding, Y. Duan, Association of thyroid function with sarcopenia in elderly Chinese euthyroid subjects. Aging Clin. Exp. Res. 31(8), 1113–1120 (2019). https://doi.org/10.1007/s40520-018-1057-z

    Article  PubMed  Google Scholar 

  14. Y. Duan, C. Liu, S. Feng, X. Wang, W. Tang, X. Mao, S. Xu, Y. Feng, H. Shen, R. Yu, R. Bu, J. Chen, W. Li, Z. Shi, X. Hu, Epidemiologic study of hypothyroidism in Jiangsu province. Chin. J. Endocrinol. Metab. 24(3), 275–277 (2008)

    Google Scholar 

  15. T.M. Ortiga-Carvalho, M.I. Chiamolera, C.C. Pazos-Moura, F.E. Wondisford, Hypothalamus-pituitary-thyroid axis. Compr. Physiol. 6(3), 1387–1428 (2016). https://doi.org/10.1002/cphy.c150027

    Article  PubMed  Google Scholar 

  16. E.C. Friesema, J. Jansen, J.W. Jachtenberg, W.E. Visser, M.H. Kester, T.J. Visser, Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol. Endocrinol. 22(6), 1357–1369 (2008). https://doi.org/10.1210/me.2007-0112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L. Mebis, D. Paletta, Y. Debaveye, B. Ellger, L. Langouche, A. D’Hoore, V.M. Darras, T.J. Visser, G. Van den Berghe, Expression of thyroid hormone transporters during critical illness. Eur. J. Endocrinol. 161(2), 243–250 (2009). https://doi.org/10.1530/eje-09-0290

    Article  CAS  PubMed  Google Scholar 

  18. C. Di Cosmo, X.H. Liao, A.M. Dumitrescu, N.J. Philp, R.E. Weiss, S. Refetoff, Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. J. Clin. Investig. 120(9), 3377–3388 (2010). https://doi.org/10.1172/JCI42113

    Article  CAS  PubMed  Google Scholar 

  19. D. Salvatore, W.S. Simonides, M. Dentice, A.M. Zavacki, P.R. Larsen, Thyroid hormones and skeletal muscle–new insights and potential implications. Nat. Rev. Endocrinol. 10(4), 206–214 (2014). https://doi.org/10.1038/nrendo.2013.238

    Article  CAS  PubMed  Google Scholar 

  20. R. Ambrosio, M.A. De Stefano, D. Di Girolamo, D. Salvatore, Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells. Mol. Cell. Endocrinol. 459, 79–83 (2017). https://doi.org/10.1016/j.mce.2017.06.014

    Article  CAS  PubMed  Google Scholar 

  21. A. Boelen, A.H. van der Spek, F. Bloise, E.M. de Vries, O.V. Surovtseva, M. van Beeren, M.T. Ackermans, J. Kwakkel, E. Fliers, Tissue thyroid hormone metabolism is differentially regulated during illness in mice. J. Endocrinol. 233(1), 25–36 (2017). https://doi.org/10.1530/joe-16-0483

    Article  CAS  PubMed  Google Scholar 

  22. G.A. Brent, Mechanisms of thyroid hormone action. J. Clin. Investig. 122(9), 3035–3043 (2012). https://doi.org/10.1172/jci60047

    Article  CAS  PubMed  Google Scholar 

  23. S.Y. Cheng, J.L. Leonard, P.J. Davis, Molecular aspects of thyroid hormone actions. Endocr. Rev. 31(2), 139–170 (2010). https://doi.org/10.1210/er.2009-0007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J.H. Oppenheimer, H.L. Schwartz, M.I. Surks, Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: liver, kidney, pituitary, heart, brain, spleen, and testis. Endocrinology 95(3), 897–903 (1974). https://doi.org/10.1210/endo-95-3-897

    Article  CAS  PubMed  Google Scholar 

  25. J.E. Silva, T.E. Dick, P.R. Larsen, The contribution of local tissue thyroxine monodeiodination to the nuclear 3,5,3’-triiodothyronine in pituitary, liver, and kidney of euthyroid rats. Endocrinology 103(4), 1196–1207 (1978). https://doi.org/10.1210/endo-103-4-1196

    Article  CAS  PubMed  Google Scholar 

  26. A. Tylki-Szymanska, R. Acuna-Hidalgo, M. Krajewska-Walasek, A. Lecka-Ambroziak, M. Steehouwer, C. Gilissen, H.G. Brunner, A. Jurecka, A. Rozdzynska-Swiatkowska, A. Hoischen, K.H. Chrzanowska, Thyroid hormone resistance syndrome due to mutations in the thyroid hormone receptor alpha gene (THRA). J. Med. Genet. 52(5), 312–316 (2015). https://doi.org/10.1136/jmedgenet-2014-102936

    Article  CAS  PubMed  Google Scholar 

  27. F. Yu, S. Gothe, L. Wikstrom, D. Forrest, B. Vennstrom, L. Larsson, Effects of thyroid hormone receptor gene disruption on myosin isoform expression in mouse skeletal muscles. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278(6), R1545–R1554 (2000). https://doi.org/10.1152/ajpregu.2000.278.6.R1545

    Article  CAS  PubMed  Google Scholar 

  28. S. Schiaffino, A.C. Rossi, V. Smerdu, L.A. Leinwand, C. Reggiani, Developmental myosins: expression patterns and functional significance. Skelet. Muscle 5, 22 (2015). https://doi.org/10.1186/s13395-015-0046-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate all of individuals for their assistance in this study.

Funding

This study was supported by the National Natural Science Foundation of China (No. 81670724) to Y.D.

Author contributions

Y.D.: experiments design and revise. W.X.: performing the experiments. L.W. and Y.S.: data analysis and interpretation. M.S., S.L. and J.Y.: critical review of this paper. X.W. and G.D.: editing this paper. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxian Ding or Yu Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animal studies were in agreement with series of ethical standards, including the institutional and/or national research committee, 1964 Helsinki declaration and its later amendments, and the National and Institutional Guidelines for Animal Welfare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Sheng, Y., Xu, W. et al. Mechanism of thyroid hormone signaling in skeletal muscle of aging mice. Endocrine 72, 132–139 (2021). https://doi.org/10.1007/s12020-020-02428-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02428-9

Keywords

Navigation