Skip to main content
Log in

Omega-3 offers better hypothalamus protection by decreasing POMC expression and elevating ghrelin hormone: a prospective trial to overcome methotrexate-induced anorexia

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Methotrexate (MTX) therapy is widely used in treatment of different types of diseases including inflammatory diseases, autoimmune disorders, and cancer. However, most of patients respond well to MTX, they suffer from multiple side effects including severe anorexia. Omega-3 fatty acid possesses many beneficial biological activities. Therefore, the objective of our study is to explore the effect of the combined modality of omega-3 (400 mg/kg/day) in MTX-induced anorexia in rats.

Methods

The effect of MTX alone and in combination with omega-3 on the body weight, ghrelin hormone level, histopathological findings of taste buds and hypothalamus and POMC gene expression were investigated.

Results

Interestingly, the capability of omega-3 to overcome the anorexic effect of MTX could be manifested by controlling weight loss, increasing serum HDL, elevating the ghrelin level as well as reducing both lesions within taste buds and hypothalamus and hypothalamic POMC gene expression.

Conclusions

our findings revealed that the omega-3 might be used as a complementary supplement during the MTX therapy to ameliorate its anorexic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.G. Benedek, Methotrexate: from its introduction to non-oncologic therapeutics to anti-TNF-alpha. Clin. Exp. Rheumatol. 28(61), S3–S8 (2010).

    CAS  PubMed  Google Scholar 

  2. R. Raghu Nadhanan, J. Skinner, R. Chung, Y.W. Su, P.R. Howe, C.J. Xian, Supplementation with fish oil and genistein, individually or in combination, protects bone against the adverse effects of methotrexate chemotherapy in rats. PloS ONE 8(8), e71592 (2013). https://doi.org/10.1371/journal.pone.0071592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Pirkmajer, S.S. Kulkarni, R.Z. Tom, F.A. Ross, S.A. Hawley, D.G. Hardie, J.R. Zierath, A.V. Chibalin, Methotrexate promotes glucose uptake and lipid oxidation in skeletal muscle via AMPK activation. Diabetes 64(2), 360–369 (2015). https://doi.org/10.2337/db14-0508

    Article  CAS  PubMed  Google Scholar 

  4. R. Heidari, A. Ahmadi, H. Mohammadi, M.M. Ommati, N. Azarpira, H. Niknahad, Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance. Biomedicine Pharmacother. 107, 834–840 (2018). https://doi.org/10.1016/j.biopha.2018.08.050

    Article  CAS  Google Scholar 

  5. Clavo, B., Rodriguez-Esparragon, F., Rodriguez-Abreu, D., Martinez-Sanchez, G., Llontop, P., Aguiar-Bujanda, D., Fernandez-Perez, L., Santana-Rodriguez, N., Modulation of oxidative stress by ozone therapy in the prevention and treatment of chemotherapy-induced toxicity: review and prospects. Antioxidants 8(12), (2019). https://doi.org/10.3390/antiox8120588

  6. M. Francois, K. Takagi, R. Legrand, N. Lucas, S. Beutheu, C. Bole-Feysot, A. Cravezic, N. Tennoune, J.C. do Rego, M. Coeffier, A. Inui, P. Dechelotte, S.O. Fetissov, Increased Ghrelin but low ghrelin-reactive immunoglobulins in a rat model of methotrexate chemotherapy-induced anorexia. Front. Nutr. 3, 23 (2016). https://doi.org/10.3389/fnut.2016.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Edwards, A., Abizaid, A.: Clarifying the Ghrelin system’s ability to regulate feeding behaviours despite enigmatic spatial separation of the GHSR and its endogenous Ligand. Int. J Mol Sci 18(4), (2017). https://doi.org/10.3390/ijms18040859

  8. B. Fu, N. Wang, H.Y. Tan, S. Li, F. Cheung, Y. Feng, Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: a review on experimental and clinical evidences. Front. Pharmacol. 9, 1394 (2018). https://doi.org/10.3389/fphar.2018.01394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. Shiomi, Y. Ohira, M. Yoshimura, T. Ozaki, M. Takei, T. Tanaka, Z-505 hydrochloride ameliorates chemotherapy-induced anorexia in rodents via activation of the ghrelin receptor, GHSR1a. Eur. J. Pharmacol. 818, 148–157 (2018). https://doi.org/10.1016/j.ejphar.2017.10.047

    Article  CAS  PubMed  Google Scholar 

  10. S.P. Kalra, P.S. Kalra, Y. Neuropeptide, Endocrine 22(1), 49–55 (2003). https://doi.org/10.1385/ENDO:22:1:49

    Article  CAS  PubMed  Google Scholar 

  11. E. Qualls-Creekmore, H. Munzberg, Modulation of feeding and associated behaviors by lateral hypothalamic circuits. Endocrinology 159(11), 3631–3642 (2018). https://doi.org/10.1210/en.2018-00449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. C. McGlory, P.C. Calder, E.A. Nunes, The influence of Omega-3 fatty acids on skeletal muscle protein turnover in health, disuse, and disease. Front. Nutr. 6, 144 (2019). https://doi.org/10.3389/fnut.2019.00144

    Article  PubMed  PubMed Central  Google Scholar 

  13. C. Kilkenny, W.J. Browne, I.C. Cuthill, M. Emerson, D.G. Altman, Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 1(2), 94–99 (2010). https://doi.org/10.4103/0976-500x.72351

    Article  PubMed  PubMed Central  Google Scholar 

  14. S.A. Yoon, J.R. Choi, J.O. Kim, J.Y. Shin, X. Zhang, J.H. Kang, Influence of reduced folate carrier and dihydrofolate reductase genes on methotrexate-induced cytotoxicity. Cancer Res. Treat.: Off. J. Korean Cancer Assoc. 42(3), 163–171 (2010). https://doi.org/10.4143/crt.2010.42.3.163

    Article  Google Scholar 

  15. S.M. Abdel-Maksoud, S.I. Hassanein, N.A. Gohar, S.M.M. Attia, M.Z. Gad, Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids. Nutritional Neurosci. 20(8), 443–448 (2017). https://doi.org/10.1080/1028415x.2016.1180859

    Article  CAS  Google Scholar 

  16. Bancroft, J. D., & Gamble, M. Theory and practice of histological techniques, 6th edn. (Churchill Livingstone, Elsevier, 2008)

  17. R.M. Khalil, W.S. Abdo, A. Saad, E.G. Khedr, Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy. Mol. Cell. Biochem. 444(1–2), 161–168 (2018)

    Article  CAS  Google Scholar 

  18. K. Fearon, F. Strasser, S.D. Anker, I. Bosaeus, E. Bruera, R.L. Fainsinger, A. Jatoi, C. Loprinzi, N. MacDonald, G. Mantovani, M. Davis, M. Muscaritoli, F. Ottery, L. Radbruch, P. Ravasco, D. Walsh, A. Wilcock, S. Kaasa, V.E. Baracos, Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12(5), 489–495 (2011). https://doi.org/10.1016/s1470-2045(10)70218-7

    Article  PubMed  Google Scholar 

  19. H. Suzuki, A. Asakawa, H. Amitani, N. Nakamura, A. Inui, Cancer cachexia-pathophysiology and management. J. Gastroenterol. 48(5), 574–594 (2013). https://doi.org/10.1007/s00535-013-0787-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A.A. de Araújo, P.B. Borba, F.H.D. de Souza, A.C. Nogueira, T.S. Saldanha, T.E.F. Araújo, A.I. da Silva, R.F. de Araújo Júnior, In a methotrexate-induced model of intestinal mucositis, olmesartan reduced inflammation and induced enteropathy characterized by severe diarrhea, weight loss, and reduced sucrose activity. Biol. Pharm. Bull. 38(5), 746–752 (2015)

    Article  Google Scholar 

  21. I.M. Berquin, I.J. Edwards, Y.Q. Chen, Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett. 269(2), 363–377 (2008)

    Article  CAS  Google Scholar 

  22. K. Werner, D. Kullenberg de Gaudry, L.A. Taylor, T. Keck, C. Unger, U.T. Hopt, U. Massing, Dietary supplementation with n-3-fatty acids in patients with pancreatic cancer and cachexia: marine phospholipids versus fish oil—a randomized controlled double-blind trial. Lipids Health Dis. 16(1), 104 (2017). https://doi.org/10.1186/s12944-017-0495-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. B.A. Mhatre, T. Marar, Protective effect of Morinda citrifolia L.(fruit extract) on methotrexate-induced toxicities—hematological and biochemical studies. Cogent Biol. 2(1), 1207879 (2016)

    Article  Google Scholar 

  24. F. Doostan, R. Vafafar, P. Zakeri-Milani, A. Pouri, R. Amini Afshar, M. Mesgari Abbasi, Effects of pomegranate (Punica Granatum L.) seed and peel methanolic extracts on oxidative stress and lipid profile changes induced by methotrexate in rats. Adv. Pharm. Bull. 7(2), 274–269 (2017). https://doi.org/10.15171/apb.2017.032

    Article  CAS  Google Scholar 

  25. M. Studer, M. Briel, B. Leimenstoll, T.R. Glass, H.C. Bucher, Effect of different antilipidemic agents and diets on mortality: a systematic review. Arch. Intern. Med. 165(7), 725–730 (2005)

    Article  CAS  Google Scholar 

  26. A. Lewis, S. Lookinland, R.L. Beckstrand, M.E. Tiedeman, Treatment of hypertriglyceridemia with omega‐3 fatty acids: a systematic review. J. Am. Acad. Nurse Pract. 16(9), 384–395 (2004)

    Article  Google Scholar 

  27. H. Yanai, Y. Masui, H. Katsuyama, H. Adachi, A. Kawaguchi, M. Hakoshima, Y. Waragai, T. Harigae, A. Sako, An improvement of cardiovascular risk factors by omega-3 polyunsaturated fatty acids. J. Clin. Med. Res. 10(4), 281–289 (2018). https://doi.org/10.14740/jocmr3362w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Y. Shanado, M. Kometani, H. Uchiyama, S. Koizumi, N. Teno, Lysophospholipase I identified as a ghrelin deacylation enzyme in rat stomach. Biochemical Biophys. Res. Commun. 325(4), 1487–1494 (2004). https://doi.org/10.1016/j.bbrc.2004.10.193

    Article  CAS  Google Scholar 

  29. J. Yang, M.S. Brown, G. Liang, N.V. Grishin, J.L. Goldstein, Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 132(3), 387–396 (2008). https://doi.org/10.1016/j.cell.2008.01.017

    Article  CAS  PubMed  Google Scholar 

  30. H. Takeda, C. Sadakane, T. Hattori, T. Katsurada, T. Ohkawara, K. Nagai, M. Asaka, Rikkunshito, an herbal medicine, suppresses cisplatin-induced anorexia in rats via 5-HT2 receptor antagonism. Gastroenterology 134(7), 2004–2013 (2008). https://doi.org/10.1053/j.gastro.2008.02.078

    Article  PubMed  Google Scholar 

  31. T. Ohno, M. Yanai, H. Ando, Y. Toyomasu, A. Ogawa, H. Morita, K. Ogata, E. Mochiki, T. Asao, H. Kuwano, Rikkunshito, a traditional Japanese medicine, suppresses cisplatin-induced anorexia in humans. Clin. Exp. Gastroenterol. 4, 291–296 (2011). https://doi.org/10.2147/ceg.s26297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Y. Hiura, S. Takiguchi, K. Yamamoto, T. Takahashi, Y. Kurokawa, M. Yamasaki, K. Nakajima, H. Miyata, Y. Fujiwara, M. Mori, K. Kangawa, Y. Doki, Effects of ghrelin administration during chemotherapy with advanced esophageal cancer patients: a prospective, randomized, placebo-controlled phase 2 study. Cancer 118(19), 4785–4794 (2012). https://doi.org/10.1002/cncr.27430

    Article  CAS  PubMed  Google Scholar 

  33. Y. Yanagimoto, S. Takiguchi, Y. Miyazaki, T. Makino, T. Takahashi, Y. Kurokawa, M. Yamasaki, H. Miyata, K. Nakajima, H. Hosoda, K. Kangawa, M. Mori, Y. Doki, Improvement of cisplatin-related renal dysfunction by synthetic ghrelin: a prospective randomised phase II trial. Br. J. Cancer 114(12), 1318–1325 (2016). https://doi.org/10.1038/bjc.2016.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A.A. Sneddon, D.V. Rayner, S.E. Mitchell, S. Bashir, J.H. Ha, K.W. Wahle, A.C. Morris, L.M. Williams, Dietary supplementation with conjugated linoleic acid plus n-3 polyunsaturated fatty acid increases food intake and brown adipose tissue in rats. Nutrients 1(2), 178–196 (2009). https://doi.org/10.3390/nu1020178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. P.R. Burghardt, E.S. Kemmerer, B.J. Buck, A.J. Osetek, C. Yan, L.G. Koch, S.L. Britton, S.J. Evans, Dietary n-3:n-6 fatty acid ratios differentially influence hormonal signature in a rodent model of metabolic syndrome relative to healthy controls. Nutr. Metab. 7(1), 53 (2010). https://doi.org/10.1186/1743-7075-7-53

    Article  CAS  Google Scholar 

  36. J.L. Stevenson, C.M. Paton, J.A. Cooper, Hunger and satiety responses to high-fat meals after a high-polyunsaturated fat diet: a randomized trial. Nutrition 41, 14–23 (2017). https://doi.org/10.1016/j.nut.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  37. O. Kuduban, M.R. Mazlumoglu, S.D. Kuduban, E. Erhan, N. Cetin, O. Kukula, O. Yarali, F.K. Cimen, M. Cankaya, The effect of hippophae rhamnoides extract on oral mucositis induced in rats with methotrexate. J. Appl. oral. Sci. 24(5), 423–430 (2016). https://doi.org/10.1590/1678-775720160139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D. Renard, R. Westhovens, E. Vandenbussche, R. Vandenberghe, Reversible posterior leucoencephalopathy during oral treatment with methotrexate. J. Neurol. 251(2), 226–228 (2004). https://doi.org/10.1007/s00415-004-0287-5

    Article  PubMed  Google Scholar 

  39. F. Celik, C. Gocmez, M. Bozkurt, I. Kaplan, K. Kamasak, E. Akil, E. Dogan, A. Guzel, E. Uzar, Neuroprotective effects of carvacrol and pomegranate against methotrexate-induced toxicity in rats. Eur. Rev. Med. Pharmacol. Sci. 17(22), 2988–2993 (2013)

    CAS  PubMed  Google Scholar 

  40. J. Wang, C. Chen, R.-Y. Wang, Influence of short- and long-term treadmill exercises on levels of ghrelin, obestatin and NPY in plasma and brain extraction of obese rats. Endocrine 33(1), 77–83 (2008). https://doi.org/10.1007/s12020-008-9056-z

    Article  CAS  PubMed  Google Scholar 

  41. M. López, S. Tovar, M.J. Vázquez, L.M. Williams, C. Diéguez, Peripheral tissue-brain interactions in the regulation of food intake. Proc. Nutr. Soc. 66(1), 131–155 (2007). https://doi.org/10.1017/s0029665107005368

    Article  PubMed  Google Scholar 

  42. J. Kamegai, H. Tamura, T. Shimizu, S. Ishii, H. Sugihara, I. Wakabayashi, Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 50(11), 2438–2443 (2001). https://doi.org/10.2337/diabetes.50.11.2438

    Article  CAS  PubMed  Google Scholar 

  43. M.A. Cowley, R.G. Smith, S. Diano, M. Tschöp, N. Pronchuk, K.L. Grove, C.J. Strasburger, M. Bidlingmaier, M. Esterman, M.L. Heiman, L.M. Garcia-Segura, E.A. Nillni, P. Mendez, M.J. Low, P. Sotonyi, J.M. Friedman, H. Liu, S. Pinto, W.F. Colmers, R.D. Cone, T.L. Horvath, The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37(4), 649–661 (2003). https://doi.org/10.1016/s0896-6273(03)00063-1

    Article  CAS  PubMed  Google Scholar 

  44. C.F. Elias, C. Aschkenasi, C. Lee, J. Kelly, R.S. Ahima, C. Bjorbaek, J.S. Flier, C.B. Saper, J.K. Elmquist, Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23(4), 775–786 (1999). https://doi.org/10.1016/s0896-6273(01)80035-0

    Article  CAS  PubMed  Google Scholar 

  45. A.P. Coll, Effects of pro-opiomelanocortin (POMC) on food intake and body weight: mechanisms and therapeutic potential? Clin. Sci. 113(4), 171–182 (2007). https://doi.org/10.1042/cs20070105

    Article  CAS  PubMed  Google Scholar 

  46. B. Dziedzic, J. Szemraj, J. Bartkowiak, A. Walczewska, Various dietary fats differentially change the gene expression of neuropeptides involved in body weight regulation in rats. J. Neuroendocrinol. 19(5), 364–373 (2007). https://doi.org/10.1111/j.1365-2826.2007.01541.x

    Article  CAS  PubMed  Google Scholar 

  47. L.F. Nascimento, G.F. Souza, J. Morari, G.O. Barbosa, C. Solon, R.F. Moura, S.C. Victório, L.M. Ignácio-Souza, D.S. Razolli, H.F. Carvalho, L.A. Velloso, n-3 fatty acids induce neurogenesis of predominantly POMC-expressing cells in the hypothalamus. Diabetes 65(3), 673–686 (2016). https://doi.org/10.2337/db15-0008

    Article  CAS  PubMed  Google Scholar 

  48. S. Ma, Y. Ge, X. Gai, M. Xue, N. Li, J. Kang, J. Wan, J. Zhang, Transgenic n-3 PUFAs enrichment leads to weight loss via modulating neuropeptides in hypothalamus. Neurosci. Lett. 611, 28–32 (2016). https://doi.org/10.1016/j.neulet.2015.11.029

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors funded the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania M. Khalil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafa, H., Barakat, L., Abdo, W.S. et al. Omega-3 offers better hypothalamus protection by decreasing POMC expression and elevating ghrelin hormone: a prospective trial to overcome methotrexate-induced anorexia. Endocrine 69, 358–367 (2020). https://doi.org/10.1007/s12020-020-02342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02342-0

Keywords

Navigation