Skip to main content

Advertisement

Log in

Characterization of agonist-dependent somatostatin receptor subtype 2 trafficking in neuroendocrine cells

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Somatostatin (SOM) receptor subtype 2 (SSTR2) is the major receptor subtype mediating SOM effects throughout the neuraxis. We previously demonstrated that the non-selective agonist [D-Trp8]-SOM induces intracellular sequestration of SSTR2, whereas this receptor is maintained at the cell surface after treatment with the SSTR2-selective agonist L-779,976 in cells co-expressing SSTR2 and SSTR5.

Methods and results

In this study, we knocked-out SSTR5 in AtT20 cells endogenously expressing both SSTR2 and SSTR5 and used immuno-labeling and confocal microscopy to investigate the effect of SSTR5 on regulation of SSTR2 trafficking. Our results indicate that unlike [D-Trp8]-SOM-induced intracellular sequestration, L-779,976 stimulation results in the maintenance of SSTR2 at the cell surface regardless of whether SSTR5 is present or not. We then examined the trafficking pathways of SSTR2 upon stimulation by either agonist. We found that both [D-Trp8]-SOM and L-779,976 induce SSTR2 internalization via transferrin-positive vesicles. However, SSTR2 internalized upon L-779,976 treatment undergoes rapid recycling to the plasma membrane, whereas receptors internalized by [D-Trp8]-SOM recycle slowly after washout of the agonist. Furthermore, [D-Trp8]-SOM stimulation induces degradation of a fraction of internalized SSTR2 whereas L-779,976-dependent, rapid SSTR2 recycling appears to protect internalized SSTR2 from degradation. In addition, Octreotide which has preferential SSTR2 affinity, induced differential effects on both SSTR2 trafficking and degradation.

Conclusion

Our results indicate that the biased agonistic property of L-779,976 protects against SSTR2 surface depletion by rapidly initiating SSTR2 recycling while SSTR5 does not regulate L-779-976-dependent SSTR2 trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Olias et al. Regulation and function of somatostatin receptors. J. Neurochem 89(5), 1057–1091 (2004)

    CAS  PubMed  Google Scholar 

  2. P. Brazeau et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179(4068), 77–79 (1973)

    CAS  PubMed  Google Scholar 

  3. Z. Csaba, P. Dournaud, Cellular biology of somatostatin receptors. Neuropeptides 35(1), 1–23 (2001)

    CAS  PubMed  Google Scholar 

  4. L.J. Hofland, S.W. Lamberts, The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr. Rev. 24(1), 28–47 (2003)

    CAS  PubMed  Google Scholar 

  5. S.W. Lamberts, Conclusions: the future role of somatostatin analogs. J. Endocrinol. Investig. 26(8 Suppl), 134–135 (2003)

    CAS  Google Scholar 

  6. G. Tulipano et al. Differential beta-arrestin trafficking and endosomal sorting of somatostatin receptor subtypes. J. Biol. Chem. 279(20), 21374–21382 (2004)

    CAS  PubMed  Google Scholar 

  7. S. Brasselet et al. Beta-arrestin is involved in the desensitization but not in the internalization of the somatostatin receptor 2A expressed in CHO cells. FEBS Lett. 516(1–3), 124–128 (2002)

    CAS  PubMed  Google Scholar 

  8. S.J. Mundell, J.L. Benovic, Selective regulation of endogenous G protein-coupled receptors by arrestins in HEK293 cells. J. Biol. Chem. 275(17), 12900–12908 (2000)

    CAS  PubMed  Google Scholar 

  9. Z. Csaba et al. Activated somatostatin type 2 receptors traffic in vivo in central neurons from dendrites to the trans Golgi before recycling. Traffic 8(7), 820–834 (2007)

    CAS  PubMed  Google Scholar 

  10. N. Sharif et al. Coexpression of somatostatin receptor subtype 5 affects internalization and trafficking of somatostatin receptor subtype 2. Endocrinology 148(5), 2095–2105 (2007)

    CAS  PubMed  Google Scholar 

  11. S. Lesche et al. Differential effects of octreotide and pasireotide on somatostatin receptor internalization and trafficking in vitro. J. Clin. Endocrinol. Metab. 94(2), 654–661 (2009)

    CAS  PubMed  Google Scholar 

  12. F.A. Ran et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8(11), 2281–2308 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. O.F. Kuzu et al. Effect of lysosomotropic molecules on cellular homeostasis. Pharmacol. Res 117, 177–184 (2017)

    CAS  PubMed  Google Scholar 

  14. D.H. Lee, A.L. Goldberg, Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8(10), 397–403 (1998)

    CAS  PubMed  Google Scholar 

  15. H.H. Mollenhauer, D.J. Morré, L.D. Rowe, Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim Biophys. Acta 1031(2), 225–246 (1990)

    CAS  PubMed  Google Scholar 

  16. D. Nouel et al. Differential internalization of somatostatin in COS-7 cells transfected with SST1 and SST2 receptor subtypes: a confocal microscopic study using novel fluorescent somatostatin derivatives. Endocrinology 138(1), 296–306 (1997)

    CAS  PubMed  Google Scholar 

  17. T. Stroh et al. Intracellular dynamics of sst5 receptors in transfected COS-7 cells: maintenance of cell surface receptors during ligand-induced endocytosis. Endocrinology 141(1), 354–365 (2000)

    CAS  PubMed  Google Scholar 

  18. M. Pfeiffer et al. Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J. Biol. Chem. 276(17), 14027–14036 (2001)

    CAS  PubMed  Google Scholar 

  19. K.W. Dunn, M.M. Kamocka, J.H. McDonald, A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300(4), C723–C742 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. J. Cordoba-Chacon et al. Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cell Mol. Life Sci. 67(7), 1147–1163 (2010)

    CAS  PubMed  Google Scholar 

  21. K.M. Mayle, A.M. Le, D.T. Kamei, The intracellular trafficking pathway of transferrin. Biochim Biophys. Acta 1820(3), 264–281 (2012)

    CAS  PubMed  Google Scholar 

  22. W. Alshafie et al. Regulated resurfacing of a somatostatin receptor storage compartment fine-tunes pituitary secretion. J. Cell Biol 219(1), e201904054 (2020)

    PubMed  Google Scholar 

  23. Z. Csaba et al. In vivo internalization of the somatostatin sst2A receptor in rat brain: evidence for translocation of cell-surface receptors into the endosomal recycling pathway. Mol. Cell Neurosci. 17(4), 646–661 (2001)

    CAS  PubMed  Google Scholar 

  24. Z. Csaba et al. Targeting sst2A receptor-expressing cells in the rat hypothalamus through in vivo agonist stimulation: neuroanatomical evidence for a major role of this subtype in mediating somatostatin functions. Endocrinology 144(4), 1564–1573 (2003)

    CAS  PubMed  Google Scholar 

  25. Z. Csaba et al. Neurochemical characterization of receptor-expressing cell populations by in vivo agonist-induced internalization: insights from the somatostatin sst2A receptor. J. Comp. Neurol. 454(2), 192–199 (2002)

    CAS  PubMed  Google Scholar 

  26. J.P. Hannon et al. Somatostatin sst2 receptor knock-out mice: localisation of sst1-5 receptor mRNA and binding in mouse brain by semi-quantitative RT-PCR, in situ hybridisation histochemistry and receptor autoradiography. Neuropharmacology 42(3), 396–413 (2002)

    CAS  PubMed  Google Scholar 

  27. M.Z. Strowski et al. Somatostatin receptor subtypes 2 and 5 inhibit corticotropin-releasing hormone-stimulated adrenocorticotropin secretion from AtT-20 cells. Neuroendocrinology 75(6), 339–346 (2002)

    CAS  PubMed  Google Scholar 

  28. M. Tallent et al. Somatostatin receptor subtypes SSTR2 and SSTR5 couple negatively to an L-type Ca2+ current in the pituitary cell line AtT-20. Neuroscience 71(4), 1073–1081 (1996)

    CAS  PubMed  Google Scholar 

  29. D. Cervia et al. Pharmacological characterisation of native somatostatin receptors in AtT-20 mouse tumour corticotrophs. Br. J. Pharmacol. 139(1), 109–121 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. A. Ben-Shlomo et al. Somatostatin receptor type 5 modulates somatostatin receptor type 2 regulation of adrenocorticotropin secretion. J. Biol. Chem. 280(25), 24011–24021 (2005)

    CAS  PubMed  Google Scholar 

  31. A. Ben-Shlomo et al. Selective regulation of somatostatin receptor subtype signaling: evidence for constitutive receptor activation. Mol. Endocrinol. 21(10), 2565–2578 (2007)

    CAS  PubMed  Google Scholar 

  32. M. Korner et al. A critical evaluation of sst3 and sst5 immunohistochemistry in human pituitary adenomas. Neuroendocrinology 106(2), 116–127 (2018)

    PubMed  Google Scholar 

  33. Q. Liu et al. Receptor signaling and endocytosis are differentially regulated by somatostatin analogs. Mol. Pharmacol. 68(1), 90–101 (2005)

    CAS  PubMed  Google Scholar 

  34. M. Grant et al. Cell growth inhibition and functioning of human somatostatin receptor type 2 are modulated by receptor heterodimerization. Mol. Endocrinol. 22(10), 2278–2292 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. F. Poll et al. Pasireotide and octreotide stimulate distinct patterns of sst2A somatostatin receptor phosphorylation. Mol. Endocrinol. 24(2), 436–446 (2010)

    PubMed  PubMed Central  Google Scholar 

  36. A. Mohamed et al. Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures. Endocr. Relat. Cancer 21(5), 691–704 (2014)

    CAS  PubMed  Google Scholar 

  37. B. Waser et al. Phosphorylation of sst2 receptors in neuroendocrine tumors after octreotide treatment of patients. Am. J. Pathol. 180(5), 1942–1949 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. I.R. Wallace et al. TSH-secreting pituitary adenoma: benefits of pre-operative octreotide. Endocrinol. Diabetes Metab. Case Rep. 2015, 150007 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. J.C. Reubi, A. Schonbrunn, Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol. Sci. 34(12), 676–688 (2013)

    CAS  PubMed  Google Scholar 

  40. D. Cuevas-Ramos, M. Fleseriu, Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J. Mol. Endocrinol. 52(3), R223–R240 (2014)

    CAS  PubMed  Google Scholar 

  41. S.W. Lamberts, A.J. van der Lely, L.J. Hofland, New somatostatin analogs: will they fulfil old promises? Eur. J. Endocrinol. 146(5), 701–705 (2002)

    CAS  PubMed  Google Scholar 

  42. Z.R. Qian et al. Association between somatostatin receptor expression and clinical outcomes in neuroendocrine tumors. Pancreas 45(10), 1386–1393 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. B. Yu et al. Clinical importance of somatostatin receptor 2 (SSTR2) and somatostatin receptor 5 (SSTR5) expression in thyrotropin-producing pituitary adenoma (TSHoma). Med Sci. Monit. 23, 1947–1955 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. W. Liu et al. Expression of somatostatin receptor 2 in somatotropinoma correlated with the short-term efficacy of somatostatin analogues. Int J. Endocrinol. 2017, 9606985 (2017)

    PubMed  PubMed Central  Google Scholar 

  45. Z. Csaba et al. Somatostatin receptor type 2 undergoes plastic changes in the human epileptic dentate gyrus. J. Neuropathol. Exp. Neurol. 64(11), 956–969 (2005)

    CAS  PubMed  Google Scholar 

  46. D. Cervia, G. Casini, P. Bagnoli, Physiology and pathology of somatostatin in the mammalian retina: a current view. Mol. Cell. Endocrinol. 286(1), 112–122 (2008)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The SSTR5 knockout cell lines were created by the MNI iPSC/CRISPR platform. Jasmine Leung provided blind quantification of SSTR2 cell surface labeling in the experiments with the SSTR5 knockout clones and Sean Goldfarb quantified the Octreotide experiments. We are most grateful to the MNI’s Microscopic Cellular Imaging Facility for their advice and support with advanced microscopy. We would also like to thank Dr Peter S. McPherson for intellectual support. The authors also wish to extend their gratitude to Naomi Takeda for administrative assistance. This work was funded through grant CIHR MOP-102713 to T.S. and grants GRK1459 and Kr1321/7-1 from Deutsche Forschungsgemeinschaft to H.J.K.; W.A. was supported by a Jeanne Timmins Costello Fellowship by the Montreal Neurological Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Walaa Alshafie or Thomas Stroh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshafie, W., Pan, Y.E., Kreienkamp, HJ. et al. Characterization of agonist-dependent somatostatin receptor subtype 2 trafficking in neuroendocrine cells. Endocrine 69, 655–669 (2020). https://doi.org/10.1007/s12020-020-02329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02329-x

Keywords

Navigation