Skip to main content
Log in

Albumin binding function is a novel biomarker for early liver damage and disease progression in non-alcoholic fatty liver disease

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Indicators to assess early liver damage and disease progression in nonalcoholic fatty liver disease (NAFLD) remain unsatisfactory. Albumin binding function has been reported to be an early indicator of liver damage in hepatitis and liver cirrhosis. However, its role in NAFLD patients is unknown.

Methods

An age/sex-matched, case-control study was performed. Albumin-binding capacity (ABiC) and albumin metal ion binding ability, assessed by ischemia modified albumin (IMA), were measured. Correlation analysis was performed to assess the association of albumin binding function with liver function enzymes and noninvasive liver fibrosis markers.

Results

A total of 80 NAFLD patients and 41 healthy controls were included. Albumin binding function was significantly lower in NAFLD (ABiC: 196.00%, p < 0.001; IMA transformed (IMAT): 0.461, p < 0.001; and IMAT/albumin: 0.947 × 10−2, p < 0.001) than controls (ABiC: 211.00%; IMAT: 0.575; and IMAT/albumin: 1.206 × 10−2). Albumin binding function was also found to be significantly different among healthy participants and different severity groups of NAFLD (p < 0.001). Besides, albumin binding function showed positive correlation with BMI (ABiC: r = −0.247, p = 0.011; IMAT: r = −0.243, p = 0.013; IMAT/albumin: r = −0.254, p = 0.009) and FIB-4 index (ABiC: r = 0.230, p = 0.029). The ROC curve suggested that albumin binding function combined with BMI and triglyceride may predict the presence of NAFLD (area under ROC (AUROC) = 0.935, p < 0.001).

Conclusion

Our findings suggest albumin binding function is a novel biomarker for early liver damage and disease progression in NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Z. Younossi, Q.M. Anstee, M. Marietti, T. Hardy, L. Henry, M. Eslam, J. George, E. Bugianesi, Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15(1), 11–20 (2018). https://doi.org/10.1038/nrgastro.2017.109

    Article  PubMed  Google Scholar 

  2. L.J. Alferink, J.C. Kiefte-de Jong, N.S. Erler, B.J. Veldt, J.D. Schoufour, R.J. de Knegt, M.A. Ikram, H.J. Metselaar, H. Janssen, O.H. Franco, S. Darwish Murad, Association of dietary macronutrient composition and non-alcoholic fatty liver disease in an ageing population: the Rotterdam Study. Gut 68(6), 1088–1098 (2019). https://doi.org/10.1136/gutjnl-2017-315940

    Article  CAS  PubMed  Google Scholar 

  3. F.M. Trovato, P. Castrogiovanni, L. Malatino, G.J.H.S. Musumeci, Nutrition: nonalcoholic fatty liver disease (NAFLD) prevention: role of Mediterranean diet and physical activity. Hepatobiliary Surg. Nutr. 8(2), 167–169 (2018). https://doi.org/10.21037/hbsn.2018.12.05

    Article  Google Scholar 

  4. F. De Chiara, S. Heeboll, G. Marrone, C. Montoliu, S. Hamilton-Dutoit, A. Ferrandez, F. Andreola, K. Rombouts, H. Gronbaek, V. Felipo, J. Gracia-Sancho, R.P. Mookerjee, H. Vilstrup, R. Jalan, K.L. Thomsen, Urea cycle dysregulation in non-alcoholic fatty liver disease. J. Hepatol. 69(4), 905–915 (2018). https://doi.org/10.1016/j.jhep.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  5. K. Thanapirom, E.A.J.H.S. Tsochatzis, Nutrition: non-alcoholic fatty liver disease (NAFLD) and the quest for effective treatments. Hepatobiliary Surg. Nutr. 8(1), 77–79 (2018). https://doi.org/10.21037/hbsn.2018.11.06

    Article  Google Scholar 

  6. D. Sleep, Albumin and its application in drug delivery. Expert Opin. Drug Deliv. 12(5), 793–812 (2015). https://doi.org/10.1517/17425247.2015.993313

    Article  CAS  PubMed  Google Scholar 

  7. R. Garcia-Martinez, P. Caraceni, M. Bernardi, P. Gines, V. Arroyo, R. Jalan, Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology 58(5), 1836–1846 (2013). https://doi.org/10.1002/hep.26338

    Article  CAS  PubMed  Google Scholar 

  8. R. Jalan, M. Bernardi, Effective albumin concentration and cirrhosis mortality: from concept to reality. J. Hepatol. 59(5), 918–920 (2013). https://doi.org/10.1016/j.jhep.2013.08.001

    Article  PubMed  Google Scholar 

  9. L. Sun, H. Yin, M. Liu, G. Xu, X. Zhou, P. Ge, H. Yang, Y. Mao, Impaired albumin function: a novel potential indicator for liver function damage? Ann. Med. 51(7-8), 333–344 (2019). https://doi.org/10.1080/07853890.2019.1693056

    Article  CAS  PubMed  Google Scholar 

  10. E.A. Bormotova, T.V. Gupalova, The relationship between albumin-binding capacity of recombinant polypeptide and changes in the structure of albumin-binding domain. Bull. Exp. Biol. Med. 159(3), 393–397 (2015). https://doi.org/10.1007/s10517-015-2972-z

    Article  CAS  PubMed  Google Scholar 

  11. P. Ge, H. Yang, J. Lu, W. Liao, S. Du, Y. Xu, H. Xu, H. Zhao, X. Lu, X. Sang, S. Zhong, J. Huang, Y. Mao, Albumin binding function: the potential earliest indicator for liver function damage. Gastroenterol. Res. Pract. 2016, 5120760 (2016). https://doi.org/10.1155/2016/5120760

    Article  PubMed  PubMed Central  Google Scholar 

  12. D. Roy, J.C. Kaski, Ischemia-modified albumin: the importance of oxidative stress. J. Am. Coll. Cardiol. 49(24), 2375–2376 (2007). https://doi.org/10.1016/j.jacc.2007.04.010 ; author reply 2376-2377

    Article  PubMed  Google Scholar 

  13. K. Oettl, R. Birner-Gruenberger, W. Spindelboeck, H.P. Stueger, L. Dorn, V. Stadlbauer, C. Putz-Bankuti, P. Krisper, I. Graziadei, W. Vogel, C. Lackner, R.E. Stauber, Oxidative albumin damage in chronic liver failure: relation to albumin binding capacity, liver dysfunction and survival. J. Hepatol. 59(5), 978–983 (2013). https://doi.org/10.1016/j.jhep.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  14. R. Jalan, K. Schnurr, R.P. Mookerjee, S. Sen, L. Cheshire, S. Hodges, V. Muravsky, R. Williams, G. Matthes, N.A. Davies, Alterations in the functional capacity of albumin in patients with decompensated cirrhosis is associated with increased mortality. Hepatology 50(2), 555–564 (2009). https://doi.org/10.1002/hep.22913

    Article  CAS  PubMed  Google Scholar 

  15. G.C. Farrell, S. Chitturi, G.K. Lau, J.D. Sollano, Guidelines for the assessment and management of non-alcoholic fatty liver disease in the Asia-Pacific region: executive summary. J. Gastroenterol. Hepatol. 22(6), 775–777 (2007). https://doi.org/10.1111/j.1440-1746.2007.05002.x

    Article  PubMed  Google Scholar 

  16. M.D. Zeng, J.G. Fan, L.G. Lu, Y.M. Li, C.W. Chen, B.Y. Wang, Y.M. Mao, Guidelines for the diagnosis and treatment of nonalcoholic fatty liver diseases. J. Dig. Dis. 9(2), 108–112 (2008). https://doi.org/10.1111/j.1751-2980.2008.00331.x

    Article  PubMed  Google Scholar 

  17. E. Vilar-Gomez, N. Chalasani, Non-invasive assessment of non-alcoholic fatty liver disease: Clinical prediction rules and blood-based biomarkers. J. Hepatol. 68(2), 305–315 (2018). https://doi.org/10.1016/j.jhep.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  18. S. Klammt, H.J. Wojak, A. Mitzner, S. Koball, J. Rychly, E.C. Reisinger, S. Mitzner, Albumin-binding capacity (ABiC) is reduced in patients with chronic kidney disease along with an accumulation of protein-bound uraemic toxins. Nephrol. Dial. Transpl. 27(6), 2377–2383 (2012). https://doi.org/10.1093/ndt/gfr616

    Article  CAS  Google Scholar 

  19. M. Domenicali, M. Baldassarre, F.A. Giannone, M. Naldi, M. Mastroroberto, M. Biselli, M. Laggetta, D. Patrono, C. Bertucci, M. Bernardi, P. Caraceni, Posttranscriptional changes of serum albumin: clinical and prognostic significance in hospitalized patients with cirrhosis. Hepatology 60(6), 1851–1860 (2014). https://doi.org/10.1002/hep.27322

    Article  CAS  PubMed  Google Scholar 

  20. M. Maciazek-Jurczyk, A. Szkudlarek, M. Chudzik, J. Pozycka, A. Sulkowska, Alteration of human serum albumin binding properties induced by modifications: a review. Spectrochim. Acta Part A, Mol. Biomol. Spectrosc. 188, 675–683 (2018). https://doi.org/10.1016/j.saa.2017.05.023

    Article  CAS  Google Scholar 

  21. M. Naldi, M. Baldassarre, M. Domenicali, M. Bartolini, P. Caraceni, Structural and functional integrity of human serum albumin: analytical approaches and clinical relevance in patients with liver cirrhosis. J. Pharm. Biomed. Anal. 144, 138–153 (2017). https://doi.org/10.1016/j.jpba.2017.04.023

    Article  CAS  PubMed  Google Scholar 

  22. M. Pawlak, P. Lefebvre, B. Staels, Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62(3), 720–733 (2015). https://doi.org/10.1016/j.jhep.2014.10.039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the help of other teammates.

Author contributions

Y.M. and J.Z. proposed the study. L.S. and M.L. wrote the first manuscript. M.L. and H.Y. conducted the experiments. Q.W. and G.X. collected the data and performed the analysis. D.W., F.X. and B.J. made charts and illustrations. Y.J. helped with the methodology. H.Y., J.Z. and Y.M. revised the manuscript. All authors contributed to the design and interpretation of the study and to further drafts.

Funding

This work was funded by grants from CAMS Innovation Fund for Medical Sciences (CIFMS) (No.2016-I2M-1-001) and Tsinghua University-Peking Union Medical College Hospital Cooperation Project (PTQH201904552).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junying Zhou or Yilei Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was approved by the Ethics Committee of Peking Union Medical College Hospital.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Wang, Q., Liu, M. et al. Albumin binding function is a novel biomarker for early liver damage and disease progression in non-alcoholic fatty liver disease. Endocrine 69, 294–302 (2020). https://doi.org/10.1007/s12020-020-02319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02319-z

Keywords

Navigation