Skip to main content
Log in

Thyroid function and lipid profile in euthyroid adults: the TCLSIH cohort study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Thyroid hormones (THs) have multiple effects on lipid synthesis, mobilization, and degradation, suggesting that THs may affect the development of dyslipidemia. However, prospective studies on the association between serum THs levels and incident dyslipidemia in euthyroid subjects are limited. Therefore, we conducted a cohort study (~5-year follow-up period, median: 3.0 years) to explore whether THs can affect incident dyslipidemia in a general euthyroid population aged 18 years old and over.

Methods

Dyslipidemia is characterized by elevated total cholesterol (TC), triglyceride (TG), or low-density lipoprotein cholesterol (LDL-C), or reduced high-density lipoprotein cholesterol (HDL-C). Serum free triiodothyronine (FT3), free thyroxine (FT4), and thyroid-stimulating hormone (TSH) were determined by chemiluminescence immunoassay. Multivariable Cox proportional hazards regression models were used to assess the association between baseline FT3, FT4, TSH, and the risk of various dyslipidemias.

Results

During follow-up period, the incidence of elevated TC, TG, LDL-C, and reduced HDL-C was 29.3%, 20.7%, 24.8%, and 19.5%, respectively. After adjustment for multiple confounders, we found that per unit increase in FT3 concentrations were associated with decreased incidence of elevated TC and LDL-C, and the hazard ratios (95% confidence interval) were 0.87 (0.79–0.97) (P < 0.01) and 0.897 (0.808–0.995) (P = 0.04), respectively. We also found a weak positive association between TSH and incidence of reduced HDL-C (P = 0.02). However, we found no association between FT4 and incident dyslipidemia.

Conclusions

Our results demonstrated that low FT3 was associated with high dyslipidemia risk, especially for elevated TC and LDL-C, and that TSH had a weak positive effect on incidence of reduced HDL-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. D.G. Smith, Epidemiology of dyslipidemia and economic burden on the healthcare system. Am. J. Manag. Care 13(Suppl 3), S68–S71 (2007)

    PubMed  Google Scholar 

  2. Y. Huang, L. Gao, X. Xie, S.C. Tan, Epidemiology of dyslipidemia in Chinese adults: meta-analysis of prevalence, awareness, treatment, and control. Popul. Health Metr. 12(1), 28 (2014). https://doi.org/10.1186/s12963-014-0028-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. R.H. Nelson, Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care 40(1), 195–211 (2013). https://doi.org/10.1016/j.pop.2012.11.003

    Article  PubMed  Google Scholar 

  4. E.J. Benjamin, M.J. Blaha, S.E. Chiuve, M. Cushman, S.R. Das, R. Deo, S.D. de Ferranti, J. Floyd, M. Fornage, C. Gillespie, C.R. Isasi, M.C. Jimenez, L.C. Jordan, S.E. Judd, D. Lackland, J.H. Lichtman, L. Lisabeth, S. Liu, C.T. Longenecker, R.H. Mackey, K. Matsushita, D. Mozaffarian, M.E. Mussolino, K. Nasir, R.W. Neumar, L. Palaniappan, D.K. Pandey, R.R. Thiagarajan, M.J. Reeves, M. Ritchey, C.J. Rodriguez, G.A. Roth, W.D. Rosamond, C. Sasson, A. Towfighi, C.W. Tsao, M.B. Turner, S.S. Virani, J.H. Voeks, J.Z. Willey, J.T. Wilkins, J.H. Wu, H.M. Alger, S.S. Wong, P. Muntner, American Heart Association Statistics Committee, Stroke Statistics Subcommittee, Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135(10), e146–e603 (2017). https://doi.org/10.1161/CIR.0000000000000485

  5. A. Moran, D. Gu, D. Zhao, P. Coxson, Y.C. Wang, C.S. Chen, J. Liu, J. Cheng, K. Bibbins-Domingo, Y.M. Shen, J. He, L. Goldman, Future cardiovascular disease in china: markov model and risk factor scenario projections from the coronary heart disease policy model-china. Circ. Cardiovasc. Qual. Outcomes 3(3), 243–252 (2010). https://doi.org/10.1161/CIRCOUTCOMES.109.910711

    Article  PubMed  PubMed Central  Google Scholar 

  6. European Association for Cardiovascular Prevention & Rehabilitation, Z. Reiner, A.L. Catapano, G. De Backer, I. Graham, M.R. Taskinen, O. Wiklund, S. Agewall, E. Alegria, M.J. Chapman, P. Durrington, S. Erdine, J. Halcox, R. Hobbs, J. Kjekshus, P.P. Filardi, G. Riccardi, R.F. Storey, D. Wood; E.S.C. Committee for Practice Guidelines, Committees, ESC/EAS guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 32(14), 1769–1818 (2011). https://doi.org/10.1093/eurheartj/ehr158

    Article  PubMed  Google Scholar 

  7. E.N. Pearce, Hypothyroidism and dyslipidemia: modern concepts and approaches. Curr. Cardiol. Rep. 6(6), 451–456 (2004)

    Article  PubMed  Google Scholar 

  8. C.V. Rizos, M.S. Elisaf, E.N. Liberopoulos, Effects of thyroid dysfunction on lipid profile. Open Cardiovasc. Med. J. 5, 76–84 (2011). https://doi.org/10.2174/1874192401105010076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D.J. Shin, T.F. Osborne, Thyroid hormone regulation and cholesterol metabolism are connected through Sterol Regulatory Element-Binding Protein-2 (SREBP-2). J. Biol. Chem. 278(36), 34114–34118 (2003). https://doi.org/10.1074/jbc.M305417200

    Article  CAS  PubMed  Google Scholar 

  10. I.M. Abreu, E. Lau, B. de Sousa Pinto, D. Carvalho, Subclinical hypothyroidism: to treat or not to treat, that is the question! A systematic review with meta-analysis on lipid profile. Endocr. Connect 6(3), 188–199 (2017). https://doi.org/10.1530/EC-17-0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. B.H.R. Wolffenbuttel, H. Wouters, S.N. Slagter, R.P. van Waateringe, A.C. Muller Kobold, J.V. van Vliet-Ostaptchouk, T.P. Links, M.M. van der Klauw, Thyroid function and metabolic syndrome in the population-based LifeLines cohort study. BMC Endocr. Disord. 17(1), 65 (2017). https://doi.org/10.1186/s12902-017-0215-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Temizkan, B. Balaforlou, A. Ozderya, M. Avci, K. Aydin, S. Karaman, M. Sargin, Effects of thyrotrophin, thyroid hormones and thyroid antibodies on metabolic parameters in a euthyroid population with obesity. Clin. Endocrinol. 85(4), 616–623 (2016). https://doi.org/10.1111/cen.13095

    Article  CAS  Google Scholar 

  13. A. Roos, S.J. Bakker, T.P. Links, R.O. Gans, B.H. Wolffenbuttel, Thyroid function is associated with components of the metabolic syndrome in euthyroid subjects. J. Clin. Endocrinol. Metab. 92(2), 491–496 (2007). https://doi.org/10.1210/jc.2006-1718

    Article  CAS  PubMed  Google Scholar 

  14. G.L. Roef, E.R. Rietzschel, C.M. Van Daele, Y.E. Taes, M.L. De Buyzere, T.C. Gillebert, J.M. Kaufman, Triiodothyronine and free thyroxine levels are differentially associated with metabolic profile and adiposity-related cardiovascular risk markers in euthyroid middle-aged subjects. Thyroid 24(2), 223–231 (2014). https://doi.org/10.1089/thy.2013.0314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Wang, Q. Yin, M. Xu, Q. Ni, W. Wang, Q. Wang, BMI modulates the effect of thyroid hormone on lipid profile in euthyroid adults. Int J. Endocrinol. 2017, 8591986 (2017). https://doi.org/10.1155/2017/8591986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. B.O. Asvold, T. Bjoro, L.J. Vatten, Associations of TSH levels within the reference range with future blood pressure and lipid concentrations: 11-year follow-up of the HUNT study. Eur. J. Endocrinol. 169(1), 73–82 (2013). https://doi.org/10.1530/EJE-13-0087

    Article  CAS  PubMed  Google Scholar 

  17. Y. Gu, H. Li, X. Bao, Q. Zhang, L. Liu, G. Meng, H. Wu, H. Du, H. Shi, Y. Xia, Q. Su, L. Fang, F. Yu, H. Yang, B. Yu, S. Sun, X. Wang, M. Zhou, Q. Jia, Q. Guo, H. Chang, G. Wang, G. Huang, K. Song, K. Niu, The relationship between thyroid function and the prevalence of type 2 diabetes mellitus in euthyroid subjects. J. Clin. Endocrinol. Metab. 102(2), 434–442 (2017). https://doi.org/10.1210/jc.2016-2965

    Article  PubMed  Google Scholar 

  18. National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults, Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106(25), 3143–3421 (2002)

  19. K.G. Alberti, R.H. Eckel, S.M. Grundy, P.Z. Zimmet, J.I. Cleeman, K.A. Donato, J.C. Fruchart, W.P. James, C.M. Loria, S.C. Smith Jr.; International Diabetes Federation Task Force on Epidemiology and Prevention, Hational Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16), 1640–1645 (2009). https://doi.org/10.1161/CIRCULATIONAHA.109.192644

    Article  CAS  PubMed  Google Scholar 

  20. A.P. Delitala, G. Fanciulli, G.M. Pes, M. Maioli, G. Delitala, Thyroid hormones, metabolic syndrome and its components. Endocr. Metab. Immune Disord. Drug Targets 17(1), 56–62 (2017). https://doi.org/10.2174/1871530317666170320105221

    Article  PubMed  Google Scholar 

  21. R. Day, R.L. Gebhard, H.L. Schwartz, K.A. Strait, W.C. Duane, B.G. Stone, J.H. Oppenheimer, Time course of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and messenger ribonucleic acid, biliary lipid secretion, and hepatic cholesterol content in methimazole-treated hypothyroid and hypophysectomized rats after triiodothyronine administration: possible linkage of cholesterol synthesis to biliary secretion. Endocrinology 125(1), 459–468 (1989). https://doi.org/10.1210/endo-125-1-459

    Article  CAS  PubMed  Google Scholar 

  22. L.H. Duntas, G. Brenta, The effect of thyroid disorders on lipid levels and metabolism. Med Clin. North Am. 96(2), 269–281 (2012). https://doi.org/10.1016/j.mcna.2012.01.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge all the people that have contributed to this study.

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 81872611), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaijun Niu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Meng, G., Zhang, Q. et al. Thyroid function and lipid profile in euthyroid adults: the TCLSIH cohort study. Endocrine 70, 107–114 (2020). https://doi.org/10.1007/s12020-020-02312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02312-6

Keywords

Navigation