Skip to main content

Advertisement

Log in

Association of PPARγ gene expression with postprandial hypertriglyceridaemia and risk of type 2 diabetes mellitus

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Peroxisome proliferator-activated receptor γ (PPARγ) gene is strongly associated with type 2 diabetes mellitus, as well as postprandial lipemia, and plays an important role in Wnt dependent adipogenesis in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). We aimed to study the expression of PPARγ gene in SAT and VAT to find out its correlation with postprandial hypertriglyceredemia and glucose intolerance.

Methods

Thirty subjects who were scheduled to undergo abdominal surgery were recruited in three groups (n = 10 in NGT, n = 10 in prediabetes, and n = 10 in T2DM). A standardized oral fat challenge was performed. Anthropometry, plasma glucose, HbA1c, and fasting serum insulin were also measured. SAT and VATs were collected during surgery for PPARγ gene expression studies by real-time PCR.

Results

PPARγ gene expression was 5.5-fold lower in T2DM and 1.7-fold lower in prediabetes as compared with NGT subjects in VAT. There was a significant negative correlation of expression of PPARγ gene in VAT {Tgauc (r = −0.57, p < 0.007), Peak Tg (r = −0.51, p < 0.01)} as well as in subcutaneous adipose tissue {Tgauc (r = −0.45, p < 0.02)} with PPTg responses measures.

Conclusion

Reduced adipocyte expression of PPARγ gene and the resultant postprandial hypertriglyceredemia is associated with greater risk of diabetes and prediabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

References

  1. World Health Organization. Genetics and Diabetes (World Health, 1999), pp. 1–15. http://www.who.int/genomics/about/Diabetis-fin.pdf

  2. G. Cristian, G.C.I. Paul, Genetic factors involved in the pathogenesis of type 2 diabetes. Genet. Diabetes 23(2), 131–192 (2010). http://www.acad.ro/sectii2002/proceedingsChemistry/doc2012-1/06Guja.pdf

    Google Scholar 

  3. M. Aslam, S. Aggarwal, K.K. Sharma, V. Galav, Postprandial hypertriglyceridemia predicts development of insulin resistance glucoseintolerance and type 2 diabete. PLoS ONE 11(1), 1–15 (2016)

    Article  CAS  Google Scholar 

  4. M. Axelsen, U. Smith, J.W. Eriksson, M.R. Taskinen, P.A. Jansson, Postprandial hypertriglyceridemia and insulin resistance in normoglycemic first-degree relatives of patients with type 2 diabetes. Ann. Intern. Med. 131(1), 27–31 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. S. Madhu, B. Sinha, M. Aslam, G. Mehrotra, S. Dwivedi, Postprandial triglyceride responses and endothelial function in prediabetic first-degree relatives of patients with diabetes. J. Clin. Lipidol. 11(6), 1415–1420 (2017). https://doi.org/10.1016/j.jacl.2017.08.001

    Article  PubMed  Google Scholar 

  6. B.E. Rios-Gonzalez, K.E. Luevano-Ortega, A.M. Saldana-Cruz, J.R. Gonzalez-Garcia, M.T. Magana-Torres, Polymorphisms of seven genes involved in lipid metabolism in an unselected Mexican population. J. Genet. 90(3), e114–e119 (2011)

    PubMed  Google Scholar 

  7. P. Perez-Martinez, J. Delgado-Lista, F. Perez-Jimenez, J. Lopez-Miranda, Update on genetics of postprandial lipemia. Atheroscler. Suppl. 11(1), 39–43 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. F. Cardona, S. Morcillo, M. Gonzalo-Marín, L. Garrido-Sanchez, M. Macias-Gonzalez, F.J. Tinahones, Pro12Ala sequence variant of the PPARG gene is associated with postprandial hypertriglyceridemia in non-E3/E3 patients with the metabolic syndrome. Clin. Chem. 52(10), 1920–1925 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. U. Edvardsson, PPARs in the Regulation of Gene Expression and Lipid Metabolism in the Liver, Department of Physiology Wallenberg Laboratory for Cardiovascular Research. The Sahlgrenska Academy at Göteborg University (Intellecta DocuSys AB, Göteborg, 2005)

  10. S.F.A. Grant, G. Thorleifsson, I. Reynisdottir, R. Benediktsson, A. Manolescu, J. Sainz et al. The risk of type 2 diabetes in 5, 164 Indians. Nat. Genet. 38(3), 320–323 (2006). http://www.ncbi.nlm.nih.gov/pubmed/16415884

    Article  CAS  PubMed  Google Scholar 

  11. G. Castillo, S. Hauser, J.K. Rosenfield, B.M. Spiegelman, Role and regulation of PPARy during Adipogenesis. J. Anim. Sci. 77(Suppl 3), 9 (1999)

    Article  Google Scholar 

  12. B.M. Spiegelman, PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47(4), 507 LP–507514 (1998). http://diabetes.diabetesjournals.org/content/47/4/507.abstract

    Article  Google Scholar 

  13. S.S. Choi, J. Park, J.H. Choi, Revisiting PPARγ as a target for the treatment of metabolic disorders. BMB Rep. 47(11), 599–608 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. P.J. Gianaros, K. Salomon, F. Zhou, J.F. Owens, L.H. Kuller, K.A.Matthews, Decreased Expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity 67(4), 553–560 (2008)

    Google Scholar 

  15. Q. Guo, S.P. Sahoo, P.R. Wang, D.P. Milot, M.C. Ippolito, M.S. Wu et al. A novel peroxisome proliferator-activated receptor α/γ dual agonist demonstrates favorable effects on lipid homeostasis. Endocrinology 145(4), 1640–1648 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. A. Chawla, E.J. Schwarz, D.D. Dimaculangan, M.A. Lazar, Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135(2), 798–800 (1994)

    Article  CAS  PubMed  Google Scholar 

  17. U. Smith, B.B. Kahn, Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 280(5), 465–475 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. L.A. Muir, C.K. Neeley, K.A. Meyer, N.A. Baker, A.M. Brosius, A.R. Washabaugh et al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity 24(3), 597–605 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. B. Gustafson, S. Hedjazifar, S. Gogg, A. Hammarstedt, U. Smith, Insulin resistance and impaired adipogenesis.Trends Endocrinol. Metab 26(4), 193–200 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. M.M. Ibrahim, Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11(1), 11–18 (2010)

    Article  PubMed  Google Scholar 

  21. A. Lüdtke, J. Buettner, W. Wu, A. Muchir, A. Schroeter, S. Zinn-Justin et al. Peroxisome proliferator-activated receptor-γ C190S mutation causes partial lipodystrophy. J. Clin. Endocrinol. Metab. 92(6), 2248–2255 (2007)

    Article  PubMed  CAS  Google Scholar 

  22. G. Medina-Gomez, S.L. Gray, L. Yetukuri, K. Shimomura, S. Virtue, M. Campbell et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet. 3(4), e64 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. I. Takada, A.P. Kouzmenko, S. Kato, Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis. Nat. Rev. Rheumatol. 5(July), 442 (2009). https://doi.org/10.1038/nrrheum.2009.137

    Article  CAS  PubMed  Google Scholar 

  24. C. Knouff, J. Auwerx, Peroxisome proliferator-activated receptor-γ calls for activation in moderation: Lessons from genetics and pharmacology. Endocr. Rev. 25(6), 899–918 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. S.V. Madhu, M. Aslam, V. Galav, S.K. Bhattacharya, A.A. Jafri, Atorvastatin prevents type 2 diabetes mellitus-an experimental study. Eur. J. Pharm. 728(April), 135–140 (2014)

    Article  CAS  Google Scholar 

  26. S.J. Li, Y.Y. Wu, W. Li, S.J. Wang, Y.M. Fan, Ultrastructural observation in a case of mucinous nevus. J. Ger. Soc. Dermatol. 16(6), 778–780 (2018)

    Google Scholar 

  27. D. Care, S.S. Suppl, Classification and diagnosis of diabetes: standards of medical care in Diabetesd2018. Diabetes Care 41(January), S13–S27 (2018)

    Google Scholar 

  28. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4), 402–408 (2001)

    Article  CAS  Google Scholar 

  29. C.J. Yen, B.A. Beamer, C. Negri, K. Silver, K.A. Brown, D.P. Yarnall et al. Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem. Biophys. Res. Commun. 241(2), 270–274 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. S.V. Madhu, S. Kant, S. Srivastava, R. Kant, S.B. Sharma, D.P. Bhadoria, Postprandial lipaemia in patients with impaired fasting glucose, impaired glucose tolerance and diabetes mellitus. Diabetes Res. Clin. Pract. 80(3), 380–385 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. K. Fujiki, F. Kano, K. Shiota, M. Murata, Expression of the peroxisome proliferator activated receptor γ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol. 7, 1–14 (2009)

    Article  CAS  Google Scholar 

  32. A. Vidal-Puig, M. Jimenez-Liñan, B.B. Lowell, A. Hamann, E. Hu, B. Spiegelman et al. Regulation of PPARγ gene expression by nutrition and obesity in rodents. J. Clin. Investig. 97(11), 2553–2561 (1996)

    Article  CAS  PubMed  Google Scholar 

  33. C. Leyvraz, C. Verdumo, M. Suter, A. Paroz, J.M. Calmes, P.M. Marques-Vidal et al. Changes in gene expression profile in human subcutaneous adipose tissue during significant weight loss. Obes. Facts 5(3), 440–451 (2012)

    Article  PubMed  Google Scholar 

  34. T.O. Hammes, Costa CDS, F. Rohden, R. Margis, AlmeidaJ.C. De, A.V. Padoin et al. Parallel down-regulation of FOXO1, PPARγ and adiponectin mRNA expression in visceral adipose tissue of class III obese individuals. Obes. Facts 5(3), 452–459 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. A. Wagener, H.F. Goessling, A.O. Schmitt, S. Mauel, A.D. Gruber, R. Reinhardt et al. Genetic and diet effects on Ppar-α and Ppar-γ signaling pathways in the Berlin Fat Mouse Inbred line with genetic predisposition for obesity. Lipids Health Dis. 9(ii), 1–10 (2010)

    Google Scholar 

  36. M. Hatami, M. Saidijam, R. Yadegarzari, S. Borzuei, A. Soltanian, M.S. Arian et al. Peroxisome proliferator-activated receptor-gamma gene expression and its association with oxidative stress in patients with metabolic syndrome. Chonnam Med. J. 52(3), 201–206 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K. Ruschke, L. Fishbein, A. Dietrich, N. Klöting, A. Tönjes, A. Oberbach, et al. Markers and mediates beneficial effects of physical training. Eur J Endocrinol 162(3), 515–523 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. K. Ylitalo, I. Nuotio, J. Viikari, J. Auwerx, H. Vidal, M.-R. Taskinen, C3, hormone-sensitive lipase, and peroxisome proliferator-activated receptor [gamma] expression in adipose tissue of familial combined hyperlipidemia patients. Metabolism. 51(5), 664–670 (2002). http://www.sciencedirect.com/science/article/pii/S0026049502797631

  39. Y. Lecarpentier, V. Claes, A. Vallée, J.L. Hébert, Interactions between PPAR gamma and the canonical Wnt/beta-catenin pathway in type 2 diabetes and colon cancer. PPAR Res. 2017, 1–9 (2017)

  40. D. Ren, T.N. Collingwood, E.J. Rebar, A.P. Wolffe, H.S. Camp, PPARγ knockdown by engineered transcription factors: Exogenous PPARγ2 but not PPARγ1 reactivates adipogenesis. Genes Dev. 16(1), 27–32 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Indian Council of Medical Research, New Delhi (Grant No. 5/4/5-3/Diab.-16-NCD-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Madhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Prior Presentation Parts of this study were presented in abstract form at the RSSDI DC 14th Annual Conference 2018, 21st October 2018 at Hotel the Lalit, New Delhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B.K., Banerjee, B.D., Agrawal, . et al. Association of PPARγ gene expression with postprandial hypertriglyceridaemia and risk of type 2 diabetes mellitus. Endocrine 68, 549–556 (2020). https://doi.org/10.1007/s12020-020-02257-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02257-w

Keywords

Navigation