Skip to main content

Advertisement

Log in

Targeted next generation sequencing of nine osteoporosis-related genes in the Wnt signaling pathway among Chinese postmenopausal women

Endocrine Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to explore the association between low-frequency and rare variants of Wnt signaling genes and postmenopausal osteoporosis (OP) by the next generation sequencing (NGS) technology.

Methods

We performed targeted NGS of nine Wnt signaling genes in 400 Chinese postmenopausal women, including 226 cases with decreased bone mineral density (BMD) and 174 controls with normal values. Proxy External Controls Association Test (ProxECAT) and logistic regression analysis were performed by data from internal cases (n = 226) and Genome Aggregation Database (gnomAD) East Asian controls (n = 9435).

Results

The genomic region of interest (ROI) of 94 functional low-frequency and rare variants was associated with OP risk (P < 0.05). The LGR6 gene was associated significantly with OP risk and BMD measurements (BMD, T-score and Z-score) (adjusted-P < 0.05) after adjusting for confounders. The allele A of rs199693693 (K82N) in LRP6 and G of novel variant 1: 202287949 (R840G) in LGR6 were associated with higher BMD, T-score, and Z-score (all adjusted-P < 0.05). ProxECAT showed that LGR4 was significantly different between the internal cases and the external controls (all adjusted-P < 0.05). Logistic regression analysis revealed that the allele G of rs765778410 (T645A) (OR = 26.16, 95% CI: 4.36–156.95, adjusted-P value = 0.026) in LGR6 and A of rs61370283 (L987M) (OR = 15.39, 95% CI: 2.98–79.55, adjusted-P value = 0.037) in LRP5 were associated with increased risk of postmenopausal OP.

Conclusion

The LGR4 and LGR6 genes and four potential functional rare variants associate with postmenopausal OP risk. These results highlight the significance of rare functional variants in postmenopausal OP genetics and provide new insights into the potential mutations in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. P. Alejandro, F. Constantinescu, A review of osteoporosis in the older adult: an update. Rheum. Dis. Clin. North Am. 44(3), 437–451 (2018)

    PubMed  Google Scholar 

  2. R. Eastell, T.W. O’Neill, L.C. Hofbauer, B. Langdahl, I.R. Reid, D.T. Gold et al. Postmenopausal osteoporosis. Nat. Rev. Dis. Prim. 2, 16069 (2016)

    PubMed  Google Scholar 

  3. U. Styrkarsdottir, B.V. Halldorsson, S. Gretarsdottir, D.F. Gudbjartsson, G.B. Walters, T. Ingvarsson et al. New sequence variants associated with bone mineral density. Nat. Genet. 41(1), 15–17 (2009)

    CAS  PubMed  Google Scholar 

  4. N.K. Arden, J. Baker, C. Hogg, K. Baan, T.D. Spector, The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J. Bone Miner. Res. 11(4), 530–534 (1996)

    CAS  PubMed  Google Scholar 

  5. J.B. Richards, H.F. Zheng, T.D. Spector, Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat. Rev. Genet. 13(8), 576–588 (2012)

    CAS  PubMed  Google Scholar 

  6. C. Medina-Gomez, J.P. Kemp, K. Trajanoska, J. Luan, A. Chesi, T.S. Ahluwalia et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am. J. Hum. Genet. 102(1), 88–102 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. K. Estrada, U. Styrkarsdottir, E. Evangelou, Y.H. Hsu, E.L. Duncan, E.E. Ntzani et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44(5), 491–501 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. C.E. Macsai, B.K. Foster, C.J. Xian, Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair. J. Cell. Physiol. 215(3), 578–587 (2008)

    CAS  PubMed  Google Scholar 

  9. W.H. Lim, B. Liu, D.J. Hunter, D. Cheng, S.J. Mah, J.A. Helms, Downregulation of Wnt causes root resorption. Am. J. Orthod. Dentofac. Orthop. 146(3), 337–345 (2014)

    Google Scholar 

  10. D. Zhang, Z. Ge, X. Ma et al. Genetic association study identified a 20 kb regulatory element in WLS associated with osteoporosis and bone mineral density in Han Chinese. Sci. Rep. 7, 13668 (2017)

    PubMed  PubMed Central  Google Scholar 

  11. A.M. Sims, N. Shephard, K. Carter, T. Doan, A. Dowling, E.L. Duncan et al. Genetic analyses in a sample of individuals with high or low BMD shows association with multiple Wnt pathway genes. J. Bone Miner. Res. 23(4), 499–506 (2008)

    CAS  PubMed  Google Scholar 

  12. K.S. Carmon, X. Gong, Q. Lin, A. Thomas, Q. Liu, R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. P Natl Acad. Sci. USA 108(28), 11452–11457 (2011)

    CAS  Google Scholar 

  13. G. Kronke, S. Uderhardt, K.A. Kim et al. R-spondin 1 protects against inflammatory bone damage during murine arthritis by modulating the Wnt pathway. Arthritis Rheum. 62(8), 2303–2312 (2010)

    PubMed  Google Scholar 

  14. T. Kamata, K. Katsube, M. Michikawa, M. Yamada, S. Takada, H. Mizusawa, R-spondin, a novel gene with thrombospondin type 1 domain, was expressed in the dorsal neural tube and affected in Wnts mutants. Biochim. Biophys. Acta 1676(1), 51–62 (2004)

    CAS  PubMed  Google Scholar 

  15. U. Styrkarsdottir, G. Thorleifsson, S.A. Gudjonsson et al. Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures. Nat. Commun. 7, 10129 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Mafi Golchin, L. Heidari, S.M. Ghaderian, H. Akhavan-Niaki, Osteoporosis: a silent disease with complex genetic contribution. J. Genet. Genom. 43, 49–61 (2016)

    Google Scholar 

  17. A. Glinka, C. Dolde, N. Kirsch, Y.L. Huang, O. Kazanskaya, D. Ingelfinger et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-catenin and Wnt/PCP signalling. EMBO Rep. 12(10), 1055–1061 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. W. de Lau, W.C. Peng, P. Gros, H. Clevers, The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 28(4), 305–316 (2014)

    PubMed  PubMed Central  Google Scholar 

  19. J.K. Pritchard, Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet. 69(1), 124–137 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. S.Y. Bang, Y.J. Na, K. Kim, Y.B. Joo, Y. Park, J. Lee et al. Targeted exon sequencing fails to identify rare coding variants with large effect in rheumatoid arthritis. Arthritis Res. Ther. 16(5), 447 (2014)

    PubMed  PubMed Central  Google Scholar 

  21. S. Lee, G.R. Abecasis, M. Boehnke, X. Lin, Rare-variant association analysis: study designs and statistical tests. Am. J. Hum. Genet. 95(1), 5–23 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. L. Luo, E. Boerwinkle, M. Xiong, Association studies for next-generation sequencing. Genome Res. 21(7), 1099–1108 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. K.L. Szegda, B.W. Whitcomb, A.C. Purdue-Smithe, M.E. Boutot, J.E. Manson, S.E. Hankinson et al. Adult adiposity and risk of early menopause. Hum. Reprod. 32(12), 2522–2531 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. A.E. Hendricks, S.C. Billups, H.N.C. Pike, I.S. Farooqi, E. Zeggini, S.A. Santorico et al. ProxECAT: Proxy External Controls Association Test. A new case-control gene region association test using allele frequencies from public controls. PLoS Genet. 14(10), e1007591 (2018)

    PubMed  PubMed Central  Google Scholar 

  25. F. Amjadi-Moheb, H. Akhavan-Niaki, Wnt signaling pathway in osteoporosis: epigenetic regulation, interaction with other signaling pathways, and therapeutic promises. J. Cell. Physiol. 234, 14641–14650 (2019)

    CAS  Google Scholar 

  26. S. Mencej-Bedrac, J. Prezelj, T. Kocjan, R. Komadina, J. Marc, Analysis of association of LRP5, LRP6, SOST, DKK1, and CTNNB1 genes with bone mineral density in a Slovenian population. Calcif. Tissue Int. 85(6), 501–506 (2009)

    CAS  PubMed  Google Scholar 

  27. C.Y. Logan, R. Nusse, The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol. 20, 781–810 (2004)

    CAS  PubMed  Google Scholar 

  28. J.B. van Meurs, F. Rivadeneira, M. Jhamai, W. Hugens, A. Hofman, J.P. van Leeuwen et al. Common genetic variation of the low-density lipoprotein receptor-related protein 5 and 6 genes determines fracture risk in elderly white men. J. Bone Miner. Res. 21(1), 141–150 (2006)

    PubMed  Google Scholar 

  29. C. Kokubu, U. Heinzmann, T. Kokubu, N. Sakai, T. Kubota, M. Kawai et al. Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis. Development 131(21), 5469–5480 (2004)

    CAS  PubMed  Google Scholar 

  30. R.C. Riddle, C.R. Diegel, J.M. Leslie, K.K. Van Koevering, M.C. Faugere, T.L. Clemens et al. Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition. PloS ONE 8(5), e63323 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. C.A. Schumacher, D.M. Joiner, K.D. Less, M.O. Drewry, B.O. Williams, Characterization of genetically engineered mouse models carrying Col2a1-cre-induced deletions of Lrp5 and/or Lrp6. Bone Res. 4, 15042 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. R. Velazquez-Cruz, H. Garcia-Ortiz, M. Castillejos-Lopez, M. Quiterio, M. Valdes-Flores, L. Orozco et al. WNT3A gene polymorphisms are associated with bone mineral density variation in postmenopausal mestizo women of an urban Mexican population: findings of a pathway-based high-density single nucleotide screening. Age 36(3), 9635 (2014)

    PubMed  PubMed Central  Google Scholar 

  33. Y. Gong, R.B. Slee, N. Fukai, G. Rawadi, S. Roman-Roman, A.M. Reginato et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4), 513–523 (2001)

    CAS  PubMed  Google Scholar 

  34. M. Kato, M.S. Patel, R. Levasseur, I. Lobov, B.H. Chang, D.A. Glass et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157(2), 303–314 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. L.M. Boyden, J. Mao, J. Belsky, L. Mitzner, A. Farhi, M.A. Mitnick et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346(20), 1513–1521 (2002)

    CAS  PubMed  Google Scholar 

  36. N. Lara-Castillo, M.L. Johnson, LRP receptor family member associated bone disease. Rev. Endocr. Metab. Disord. 16(2), 141–148 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. U. Styrkarsdottir, G. Thorleifsson, P. Sulem, D.F. Gudbjartsson, A. Sigurdsson, A. Jonasdottir et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature 497(7450), 517–520 (2013)

    CAS  PubMed  Google Scholar 

  38. J. Luo, W. Zhou, X. Zhou, D. Li, J. Weng, Z. Yi et al. Regulation of bone formation and remodeling by G-protein-coupled receptor 48. Development 136(16), 2747–2756 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. Cui, R. Huang, Y. Wang, L. Zhu, X. Zhang, Down-regulation of LGR6 promotes bone fracture recovery using bone marrow stromal cells. Biomed. Pharmacother. 99, 629–637 (2018)

    CAS  PubMed  Google Scholar 

  40. V. Khedgikar, J.A. Lehoczky, Evidence for Lgr6 as a novel marker of osteoblastic progenitors in mice. JBMR 3(2), e10075 (2019)

    Google Scholar 

  41. L. Dong, N. Wu, S. Wang, Y. Cheng, L. Han, J. Zhao et al. Detection of novel germline mutations in six breast cancer predisposition genes by targeted next-generation sequencing. Hum. Mutat. 39(10), 1442–1455 (2018)

    CAS  PubMed  Google Scholar 

  42. F.M. Hannan, P.J. Newey, M.P. Whyte, R.V. Thakker, Genetic approaches to metabolic bone diseases. Br. J. Clin. Pharmacol. 85, 1147–1160 (2019)

    PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China [Grant no. 81573235], the Natural Science Foundation of Hubei Province [Grant no. 2019CFB647 and 2019CFB709], and the Fundamental Research Funds for the Central Universities [Grant no. 2019kfyXKJC003].

Author information

Authors and Affiliations

Authors

Contributions

C.L., Q.H., R.Y., X.G., and Q.W. designed the research; C.L., Q.H., R.Y., X.G., Y.D., J.Z., Y.Z., L.T, X.L., and H.Z. conducted the research; C.L. analyzed the data; C.L., Q.H., and R.Y. wrote the draft; all authors read, reviewed, and approved the final paper; Q.W. had primary responsibility for final content.

Corresponding author

Correspondence to Qi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Huang, Q., Yang, R. et al. Targeted next generation sequencing of nine osteoporosis-related genes in the Wnt signaling pathway among Chinese postmenopausal women. Endocrine 68, 669–678 (2020). https://doi.org/10.1007/s12020-020-02248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02248-x

Keywords

Navigation