Skip to main content

Advertisement

Log in

The insulin resistance is reversed by exogenous 3,5,3′triiodothyronine in type 2 diabetic Goto–Kakizaki rats by an inflammatory-independent pathway

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Diabetes mellitus (DM) has a multifactorial etiology that imparts a particular challenge to effective pharmacotherapy. Thyroid hormone actions have demonstrated beneficial effects in diabetic as well as obese rats. In both conditions, inflammation status plays a crucial role in the development of insulin resistance. Taking this into consideration, the present study aimed to demonstrate another possible pathway of thyroid hormone action on insulin sensitivity in a spontaneous type 2 diabetic rat model: the Goto–Kakizaki (GK) rats. GK animals present all typical hallmarks of type 2 DM (T2DM), except the usual peripheric inflammatory condition, observed in the other T2DM animal models.

Methods

GK rats were treated or not with 3,5,3′triiodothyronine (T3). Insulin sensitivity, glucose tolerance, and proteins related to glucose uptake and utilization were evaluated in the skeletal muscle, white adipose tissue, and liver.

Results

GK rats T3-treated presented enhanced insulin sensitivity, increased GLUT-4 content in the white adipose tissue and skeletal muscle, and increased hexokinase and citrate synthase content in skeletal muscle. Both non-treated and T3-treated GK rats did not present alterations in cytokine content in white adipose tissue, skeletal muscle, liver, and serum.

Conclusions

These results indicate that T3 improves insulin sensitivity in diabetic rats by a novel inflammatory-independent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCL-2:

C–C motif chemokine ligand 2

DM:

diabetes mellitus

GK:

Goto–Kakizaki

GTT:

glucose tolerance test

GLUT-4:

glucose transporter type 4

IL-1α:

interleukin 1 alpha

IL-1β:

interleukin 1 beta

IL-6:

interleukin 6

IL-10:

interleukin 10

ITT:

insulin tolerance test

PCK:

phosphoenolpyruvate carboxykinase 1

PYGM:

glycogen phosphorylase

T3:

3,5,3′triiodothyronine

TNF-α:

tumor necrosis factor alpha

TSH:

thyroid-stimulating hormone

References

  1. L. Chen, D.J. Magliano, P.Z. Zimmet, The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat. Rev. Endocrinol. 8, 228–236 (2011)

    Article  Google Scholar 

  2. S.P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel Jr., A.W. Ferrante, Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 112, 1796–1808 (2003)

    Article  CAS  Google Scholar 

  3. M.F. Gregor, G.S. Hotamisligil, Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011)

    Article  CAS  Google Scholar 

  4. P. Brunetti, The lean patient with type 2 diabetes: characteristics and therapy challenge. Int. J. Clin. Pract. Suppl. 153, 3–9 (2007).

    CAS  Google Scholar 

  5. S. Tanaka, M. Honda, B. Wu, T. Kazumi, Clinical features of normal weight Japanese patients with type 2 diabetes who had formerly been obese. J. Atheroscler. Thromb. 18, 115–121 (2011)

    Article  Google Scholar 

  6. S.D. Prato, J. LaSalle, S. Matthaei, C.J. Bailey, Tailoring treatment to the individual in type 2 diabetes practical guidance from the Global Partnership for Effective Diabetes Management. Int. J. Clin. Pract. 64, 295–304 (2010)

    Article  Google Scholar 

  7. K. Vondra, J. Vrbikova, K. Dvorakova, Thyroid gland diseases in adult patients with diabetes mellitus. Minerva Endocrinol. 30, 217–236 (2005)

    CAS  PubMed  Google Scholar 

  8. B.I. Joffe, L.A. Distiller, Diabetes mellitus and hypothyroidism: strange bedfellows or mutual companions? World J. Diabetes 15, 901–904 (2014)

    Article  Google Scholar 

  9. A.C. Panveloski-Costa, S. Silva Teixeira, I.M. Ribeiro, C. Serrano-Nascimento, R.X. das Neves, R.R. Favaro, M. Seelaender, V.R. Antunes, M.T. Nunes, Thyroid hormone reduces inflammatory cytokines improving glycaemia control in alloxan-induced diabetic wistar rats. Acta Physiol. 217, 130–140 (2016)

    Article  CAS  Google Scholar 

  10. G. Brenta, A.S. Caballero, M.T. Nunes, Case finding for hypothyroidism should include type 2 diabetes and metabolic syndrome patients: a Latin American Thyroid Society (LATS) position statement. Endocr. Pract. 25, 101–105 (2019)

    Article  Google Scholar 

  11. A.C. Panveloski-Costa, C. Serrano-Nascimento, P. Bargi-Souza, L.L. Poyares, G.S. Viana, M.T. Nunes, Beneficial effects of thyroid hormone on adipose inflammation and insulin sensitivity of obese Wistar rats. Physiol. Rep. 6(3), e13550 (2018)

    Article  Google Scholar 

  12. S.D. Teixeira, A.C. Panveloski-Costa, A. Carvalho, F.P. Monteiro Schiavon, A.C. Ruiz Marque, R.S. Campello, R.B. Bazotte, M.T. Nunes, Thyroid hormone treatment decreases hepatic glucose production and renal reabsorption of glucose in alloxan-induced diabetic Wistar rats. Physiol. Rep. 4(18), e12961 (2016)

    Article  Google Scholar 

  13. Y. Goto, M. Kakizaki, N. Masaki, Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J. Exp. Med. 119, 85–90 (1976)

    Article  CAS  Google Scholar 

  14. B. Portha, M.H. Giroix, C. Tourrel-Cuzin, H. Le-Stunff, J. Movassat, The GK rat: a prototype for the study of non-overweight type 2 diabetes. Methods Mol. Biol. 933, 125–159 (2012)

    CAS  PubMed  Google Scholar 

  15. W.M.T. Kuwabara, A.C. Panveloski-Costa, C.N.F. Yokota, J.N.B. Pereira, J.M. Filho, R.P. Torres, S.M. Hirabara, R. Curi, T.C. Alba-Loureiro, Comparison of Goto-Kakizaki rats and high fat diet-induced obese rats: are they reliable models to study type 2 diabetes mellitus? PLoS ONE 12, e0189622 (2017)

    Article  Google Scholar 

  16. M.F. Elshal, J.P. McCoy, Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 38, 317–323 (2006)

    Article  CAS  Google Scholar 

  17. P.E. Lacy, M. Kostianovsky, Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16, 35–39 (1967)

    Article  CAS  Google Scholar 

  18. A.M. Scott, I. Atwater, E. Rojas, A method for the simultaneous measurement of insulin release and B cell membrane potential in single mouse islets of Langerhans. Diabetologia 21, 470–475 (1981)

    Article  CAS  Google Scholar 

  19. I. Romero-Calvo, B. Ocón, P. Martínez-Moya, M.D. Suárez, A. Zarzuelo, O. Martínez-Augustin, F.S. de Medina, Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal. Biochem. 401, 318–320 (2010)

    Article  CAS  Google Scholar 

  20. M.A. Fortes, G.N. Marzuca-Nassr, K.F. Vitzel, C.H. da Justa Pinheiro, P. Newsholme, R. Curi, Housekeeping proteins: how useful are they in skeletal muscle diabetes studies and muscle hypertrophy models? Anal. Biochem. 504, 38–40 (2016)

    Article  CAS  Google Scholar 

  21. S.W. Coppack, Pro-inflammatory cytokines and adipose tissue. Proc. Nutr. Soc. 60, 349–356 (2001)

    Article  CAS  Google Scholar 

  22. M.J. Kraakman, A.J. Murphy, K. Jandeleit-Dahm, H.L. Kammoun, Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front. Immunol. 26(5), 470 (2014)

    Google Scholar 

  23. S. Huang, M.P. Czech, The GLUT4 glucose transporter. Cell Metab. 5, 237–252 (2007)

    Article  CAS  Google Scholar 

  24. C. Postic, A. Leturque, R.L. Printz, P. Maulard, M. Loizeau, D.K. Granner, J. Girard, Development and regulation of glucose transporter and hexokinase expression in rat. Am. J. Physiol. 266, 548–559 (1994)

    Google Scholar 

  25. P.A. Srere, Controls of citrate synthase activity. Life Sci. 10, 1695–1710 (1974)

    Article  Google Scholar 

  26. F. Miralles, B. Portha, Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. Diabetes 50, 84–88 (2001)

    Article  Google Scholar 

  27. C. Plachot, J. Movassat, B. Portha, Impaired beta-cell regeneration after partial pancreatectomy in the adult Goto-Kakizaki rat, a spontaneous model of type 2 diabetes. Histochem. Cell Biol. 116, 131–139 (2001)

    Article  CAS  Google Scholar 

  28. G.D. Dimitriadis, S.A. Raptis, Thyroid hormone excess and glucose intolerance. Exp. Clin. Endocrinol. Diabetes 109, 225–239 (2001)

    Article  Google Scholar 

  29. R. Mullur, Y.Y. Liu, G.A. Brent, Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382 (2014)

    Article  CAS  Google Scholar 

  30. R.A. DeFronzo, Pathogenesis of type 2 diabetes mellitus. Med. Clin. N. Am. 88, 787–835 (2004)

    Article  CAS  Google Scholar 

  31. E. Alvarez-Salas, C. Aceves, B. Anguiano, R.M. Uribe, C. García-Luna, E. Sánchez, P. de Gortari, Food-restricted and dehydrated-induced anorexic rats present differential TRH expression in anterior and caudal PVN. Role of type 2 deiodinase and pyroglutamyl aminopeptidase II. Endocrinology 153, 4067–4076 (2012)

    Article  CAS  Google Scholar 

  32. L. Mebis, Y. Debaveye, B. Ellger, S. Derde, E.-J. Ververs, L. Langouche, V. M. Darras, E. Fliers, T.J. Visser, G. Van den Berghe. Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness. Crit Care, 13:R147 (2009)

  33. J.E. Silva, Thyroid hormone control of thermogenesis and energy balance. Thyroid. 5, 481–492 (1995)

    Article  CAS  Google Scholar 

  34. K.K. Kim, K.S. Park, S.B. Song, K.E. Kim, Insulin represses transcription of the thyroid stimulating hormone beta-subunit gene through increased recruitment of nuclear factor I. J. Biol. Chem. 285, 32003–32011 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Tatiane Alba Loureiro for all scientific support during this study.

Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant nos. 2013/05629-4 and 2017/21875-6); Conselho Nacional de Pesquisa e Desenvolvimento (Grant nos. 309437/2017-2 and 402332/2014-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Panveloski-Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The Animal Ethical Committee of the Institute of Biomedical Sciences of the University of São Paulo (number 109/2013) approved all experimental procedures of this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panveloski-Costa, A.C., Kuwabara, W.M.T., Munhoz, A.C. et al. The insulin resistance is reversed by exogenous 3,5,3′triiodothyronine in type 2 diabetic Goto–Kakizaki rats by an inflammatory-independent pathway. Endocrine 68, 287–295 (2020). https://doi.org/10.1007/s12020-020-02208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02208-5

Keywords

Navigation