Skip to main content

Advertisement

Log in

High bone marrow fat in patients with Cushing’s syndrome and vertebral fractures

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The evaluation of skeletal fragility in Cushing’s syndrome (CS) is a clinical challenge, since dual-energy X-ray absorptiometry (DXA) does not capture abnormalities in bone microstructure induced by glucocorticoid excess. Hypercortisolism was shown to increase bone marrow adiposity, but it is still unknown whether high bone marrow fat (BMF) as measured by vertebral magnetic resonance spectroscopy may predict fracture risk in this clinical setting. In this cross-sectional study, we evaluated the association between BMF and vertebral fractures (VFs) in patients with CS.

Methods

Twenty patients (5 M, age 44 ± 13 years) with active CS were evaluated for morphometric VFs, lumbar spine BMF, and bone mineral density (BMD). Fifteen healthy volunteers (4 M, age 43 ± 12 years) acted as control group for BMF evaluation.

Results

BMF was significantly higher in CS patients vs. controls (52.0% vs. 27.0%, p < 0.01), and was directly correlated with patients’ age (p = 0.03), 24-hours urine-free cortisol (p = 0.03), midnight serum cortisol (p = 0.02), and serum CTX (p = 0.01). Patients with VFs (13 cases) showed significantly higher BMF vs. patients without VFs (65.0% vs. 24.0%, p = 0.03). Fractured patients with either normal BMD or osteopenia showed comparable BMF to fractured patients with either osteoporosis or low BMD for age (p = 0.71). When the analysis was restricted to patients with normal BMD or osteopenia, VFs were still significantly associated with higher BMF (p = 0.05).

Conclusions

This study provides a first evidence that vertebral adiposity may be a marker of hypercortisolism-induced skeletal fragility and measurement of spine BMF could have a role in the diagnostic work-up for the assessment of fracture risk in CS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R. Pivonello, A.M. Isidori, M.C. De Martino, J. Newell-Price, B.M. Biller, A. Colao, Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol. 4, 611–629 (2016). https://doi.org/10.1016/S2213-8587(16)00086-3

    Article  CAS  PubMed  Google Scholar 

  2. F. Ferrau, M. Korbonits, Metabolic syndrome in Cushing’s syndrome patients. Front. Horm. Res. 49, 85–103 (2018). https://doi.org/10.1159/000486002

    Article  PubMed  Google Scholar 

  3. A.M. Isidori, C. Graziadio, R.M. Paragliola, A. Cozzolino, A.G. Ambrogio, A. Colao, S.M. Corsello, R. Pivonello, A.B.C.S. Group, The hypertension of Cushing’s syndrome: controversies in the pathophysiology and focus on cardiovascular complications. J. Hypertens. 33, 44–60 (2015). https://doi.org/10.1097/HJH.0000000000000415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. E. Canalis, G. Mazziotti, A. Giustina, J.P. Bilezikian, Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos. Int. 18, 1319–1328 (2007). https://doi.org/10.1007/s00198-007-0394-0

    Article  CAS  PubMed  Google Scholar 

  5. G. Mazziotti, A. Delgado, F. Maffezzoni, A. Formenti, A. Giustina, Skeletal fragility in endogenous hypercortisolism. Front. Horm. Res. 46, 66–73 (2016). https://doi.org/10.1159/000443866

    Article  CAS  PubMed  Google Scholar 

  6. A. Scillitani, G. Mazziotti, C. Di Somma, S. Moretti, A. Stigliano, R. Pivonello, A. Giustina, A. Colao, Treatment of skeletal impairment in patients with endogenous hypercortisolism: when and how? Osteoporos. Int. 25, 441–446 (2014). https://doi.org/10.1007/s00198-013-2588-y

    Article  CAS  PubMed  Google Scholar 

  7. L. Tauchmanova, R. Pivonello, C. Di Somma, R. Rossi, M.C. De Martino, L. Camera, M. Klain, M. Salvatore, G. Lombardi, A. Colao, Bone demineralization and vertebral fractures in endogenous cortisol excess: role of disease etiology and gonadal status. J. Clin. Endocrinol. Metab. 91, 1779–1784 (2006). https://doi.org/10.1210/jc.2005-0582

    Article  CAS  PubMed  Google Scholar 

  8. Schousboe, J.T., Shepherd, J.A., Bilezikian, J.P., Baim, S. Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J. Clin. Densitom. 16, 455–466 (2013). https://doi.org/10.1016/j.jocd.2013.08.004

    Article  Google Scholar 

  9. G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41, 58–69 (2012). https://doi.org/10.1007/s12020-011-9570-2

    Article  CAS  PubMed  Google Scholar 

  10. L. Trementino, G. Appolloni, L. Ceccoli, G. Marcelli, C. Concettoni, M. Boscaro, G. Arnaldi, Bone complications in patients with Cushing’s syndrome: looking for clinical, biochemical, and genetic determinants. Osteoporos. Int. 25, 913–921 (2014). https://doi.org/10.1007/s00198-013-2520-5

    Article  CAS  PubMed  Google Scholar 

  11. E. Valassi, A. Santos, M. Yaneva, M. Toth, C.J. Strasburger, P. Chanson, J.A. Wass, O. Chabre, M. Pfeifer, R.A. Feelders, S. Tsagarakis, P.J. Trainer, H. Franz, K. Zopf, S. Zacharieva, S.W. Lamberts, A. Tabarin, S.M. Webb, The European Registry on Cushing’s syndrome: 2-year experience. Baseline demographic and clinical characteristics. Eur. J. Endocrinol. 165, 383–392 (2011). https://doi.org/10.1530/eje-11-0272

    Article  CAS  PubMed  Google Scholar 

  12. Z.E. Belaya, D. Hans, L.Y. Rozhinskaya, N.V. Dragunova, N.I. Sasonova, A.G. Solodovnikov, T.T. Tsoriev, L.K. Dzeranova, G.A. Melnichenko, I.I. Dedov, The risk factors for fractures and trabecular bone-score value in patients with endogenous Cushing’s syndrome. Arch. Osteoporos. 10, 44 (2015). https://doi.org/10.1007/s11657-015-0244-1

    Article  PubMed  Google Scholar 

  13. G. Mazziotti, A. Angeli, J.P. Bilezikian, E. Canalis, A. Giustina, Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol. Metab. 17, 144–149 (2006). https://doi.org/10.1016/j.tem.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  14. H. Tsugeno, B. Goto, T. Fujita, M. Okamoto, T. Mifune, F. Mitsunobu, K. Ashida, Y. Hosaki, T. Tsuji, Y. Tanizaki, Oral glucocorticoid-induced fall in cortical bone volume and density in postmenopausal asthmatic patients. Osteoporos. Int. 12, 266–270 (2001). https://doi.org/10.1007/s001980170115

    Article  CAS  PubMed  Google Scholar 

  15. L. Dalle Carbonare, M.E. Arlot, P.M. Chavassieux, J.P. Roux, N.R. Portero, P.J. Meunier, Comparison of trabecular bone microarchitecture and remodeling in glucocorticoid-induced and postmenopausal osteoporosis. J. Bone Miner. Res. 16, 97–103 (2001). https://doi.org/10.1359/jbmr.2001.16.1.97

    Article  CAS  PubMed  Google Scholar 

  16. C.V. dos Santos, L. Vieira Neto, M. Madeira, M.C. Alves Coelho, L.M. de Mendonca, P. Paranhos-Neto Fde, I.C. Lima, M.R. Gadelha, M.L. Farias, Bone density and microarchitecture in endogenous hypercortisolism. Clin. Endocrinol. 83, 468–474 (2015). https://doi.org/10.1111/cen.12812

    Article  CAS  Google Scholar 

  17. G. Mazziotti, S. Frara, A. Giustina, Pituitary diseases and bone. Endocr. Rev. 39, 440–488 (2018). https://doi.org/10.1210/er.2018-00005

    Article  PubMed  Google Scholar 

  18. C. Eller-Vainicher, V. Morelli, F.M. Ulivieri, S. Palmieri, V.V. Zhukouskaya, E. Cairoli, R. Pino, A. Naccarato, A. Scillitani, P. Beck-Peccoz, I. Chiodini, Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J. Bone Miner. Res. 27, 2223–2230 (2012). https://doi.org/10.1002/jbmr.1648

    Article  CAS  PubMed  Google Scholar 

  19. C.J. Rosen, C. Ackert-Bicknell, J.P. Rodriguez, A.M. Pino, Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit. Rev. Eukaryot. Gene Expr. 19, 109–124 (2009)

    Article  CAS  Google Scholar 

  20. E.J. Moerman, K. Teng, D.A. Lipschitz, B. Lecka-Czernik, Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3, 379–389 (2004). https://doi.org/10.1111/j.1474-9728.2004.00127.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. F.W. Wehrli, J.A. Hopkins, S.N. Hwang, H.K. Song, P.J. Snyder, J.G. Haddad, Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry. Radiology 217, 527–538 (2000). https://doi.org/10.1148/radiology.217.2.r00nv20527

    Article  CAS  PubMed  Google Scholar 

  22. J. Justesen, K. Stenderup, E.N. Ebbesen, L. Mosekilde, T. Steiniche, M. Kassem, Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2, 165–171 (2001)

    Article  CAS  Google Scholar 

  23. A.V. Schwartz, S. Sigurdsson, T.F. Hue, T.F. Lang, T.B. Harris, C.J. Rosen, E. Vittinghoff, K. Siggeirsdottir, G. Sigurdsson, D. Oskarsdottir, K. Shet, L. Palermo, V. Gudnason, X. Li, Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J. Clin. Endocrinol. Metab. 98, 2294–2300 (2013). https://doi.org/10.1210/jc.2012-3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J.F. Griffith, D.K. Yeung, G.E. Antonio, F.K. Lee, A.W. Hong, S.Y. Wong, E.M. Lau, P.C. Leung, Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236, 945–951 (2005). https://doi.org/10.1148/radiol.2363041425

    Article  PubMed  Google Scholar 

  25. E.B. Geer, W. Shen, E. Strohmayer, K.D. Post, P.U. Freda, Body composition and cardiovascular risk markers after remission of Cushing’s disease: a prospective study using whole-body MRI. J. Clin. Endocrinol. Metab. 97, 1702–1711 (2012). https://doi.org/10.1210/jc.2011-3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. F. Maurice, A. Dutour, C. Vincentelli, I. Abdesselam, M. Bernard, H. Dufour, Y. Le Fur, T. Graillon, F. Kober, P. Cristofari, E. Jouve, L. Pini, R. Fernandez, C. Chagnaud, T. Brue, F. Castinetti, B. Gaborit, Active cushing syndrome patients have increased ectopic fat deposition and bone marrow fat content compared to cured patients and healthy subjects: a pilot 1H-MRS study. Eur. J. Endocrinol. 179, 307–317 (2018). https://doi.org/10.1530/eje-18-0318

    Article  CAS  PubMed  Google Scholar 

  27. G.M. Blake, J.F. Griffith, D.K. Yeung, P.C. Leung, I. Fogelman, Effect of increasing vertebral marrow fat content on BMD measurement, T-Score status and fracture risk prediction by DXA. Bone 44, 495–501 (2009). https://doi.org/10.1016/j.bone.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  28. L.K. Nieman, B.M. Biller, J.W. Findling, M.H. Murad, J. Newell-Price, M.O. Savage, A. Tabarin, Treatment of Cushing’s Syndrome: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 100, 2807–2831 (2015). https://doi.org/10.1210/jc.2015-1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. G. Mazziotti, E. Canalis, A. Giustina, Drug-induced osteoporosis: mechanisms and clinical implications. Am. J. Med. 123, 877–884 (2010). https://doi.org/10.1016/j.amjmed.2010.02.028

    Article  CAS  PubMed  Google Scholar 

  30. H.K. Genant, M. Jergas, L. Palermo, M. Nevitt, R.S. Valentin, D. Black, S.R. Cummings, Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J. Bone Miner. Res. 11, 984–996 (1996). https://doi.org/10.1002/jbmr.5650110716

    Article  CAS  PubMed  Google Scholar 

  31. J.C. Crane, M.P. Olson, S.J. Nelson, SIVIC: Open-Source, Standards-Based Software for DICOM MR Spectroscopy Workflows. Int. J. Biomed. Imaging 2013, 169526 (2013). https://doi.org/10.1155/2013/169526

    Article  PubMed  PubMed Central  Google Scholar 

  32. X. Li, D. Kuo, A.L. Schafer, A. Porzig, T.M. Link, D. Black, A.V. Schwartz, Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J. Magn. Reson. Imaging 33, 974–979 (2011). https://doi.org/10.1002/jmri.22489

    Article  PubMed  PubMed Central  Google Scholar 

  33. V. Shalhoub, D. Conlon, M. Tassinari, C. Quinn, N. Partridge, G.S. Stein, J.B. Lian, Glucocorticoids promote development of the osteoblast phenotype by selectively modulating expression of cell growth and differentiation associated genes. J. Cell. Biochem. 50, 425–440 (1992). https://doi.org/10.1002/jcb.240500411

    Article  CAS  PubMed  Google Scholar 

  34. A. Wedel, H.W. Ziegler-Heitbrock, The C/EBP family of transcription factors. Immunobiology 193, 171–185 (1995)

    Article  CAS  Google Scholar 

  35. Z. Wu, N.L. Bucher, S.R. Farmer, Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol. Cell. Biol. 16, 4128–4136 (1996)

    Article  CAS  Google Scholar 

  36. K. Ohnaka, M. Tanabe, H. Kawate, H. Nawata, R. Takayanagi, Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem. Biophys. Res. Commun. 329, 177–181 (2005). https://doi.org/10.1016/j.bbrc.2005.01.117

    Article  CAS  PubMed  Google Scholar 

  37. E. Smith, B. Frenkel, Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3beta-dependent and -independent manner. J. Biol. Chem. 280, 2388–2394 (2005). https://doi.org/10.1074/jbc.M406294200

    Article  CAS  PubMed  Google Scholar 

  38. A. Oleksik, P. Lips, A. Dawson, M.E. Minshall, W. Shen, C. Cooper, J. Kanis, Health-related quality of life in postmenopausal women with low BMD with or without prevalent vertebral fractures. J. Bone Miner. Res. 15, 1384–1392 (2000). https://doi.org/10.1359/jbmr.2000.15.7.1384

    Article  CAS  PubMed  Google Scholar 

  39. S. Vasikaran, R. Eastell, O. Bruyere, A.J. Foldes, P. Garnero, A. Griesmacher, M. McClung, H.A. Morris, S. Silverman, T. Trenti, D.A. Wahl, C. Cooper, J.A. Kanis, Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos. Int. 22, 391–420 (2011). https://doi.org/10.1007/s00198-010-1501-1

    Article  CAS  PubMed  Google Scholar 

  40. S.D. Vasikaran, S.A. Chubb, The use of biochemical markers of bone turnover in the clinical management of primary and secondary osteoporosis. Endocrine 52, 222–225 (2016). https://doi.org/10.1007/s12020-016-0900-2

    Article  CAS  PubMed  Google Scholar 

  41. V. Sottile, K. Seuwen, M. Kneissel, Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif. Tissue Int. 75, 329–337 (2004). https://doi.org/10.1007/s00223-004-0224-8

    Article  CAS  PubMed  Google Scholar 

  42. R. Pedersini, S. Monteverdi, G. Mazziotti, V. Amoroso, E. Roca, F. Maffezzoni, L. Vassalli, F. Rodella, A.M. Formenti, S. Frara, R. Maroldi, A. Berruti, E. Simoncini, A. Giustina, Morphometric vertebral fractures in breast cancer patients treated with adjuvant aromatase inhibitor therapy: a cross-sectional study. Bone 97, 147–152 (2017). https://doi.org/10.1016/j.bone.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  43. T. Mancini, G. Mazziotti, M. Doga, R. Carpinteri, N. Simetovic, P.P. Vescovi, A. Giustina, Vertebral fractures in males with type 2 diabetes treated with rosiglitazone. Bone 45, 784–788 (2009). https://doi.org/10.1016/j.bone.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  44. G. Mazziotti, C. Dordoni, M. Doga, F. Galderisi, M. Venturini, P. Calzavara-Pinton, R. Maroldi, A. Giustina, M. Colombi, High prevalence of radiological vertebral fractures in adult patients with Ehlers-Danlos syndrome. Bone 84, 88–92 (2016). https://doi.org/10.1016/j.bone.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  45. L. Trementino, L. Ceccoli, C. Concettoni, G. Marcelli, G. Michetti, M. Boscaro, G. Arnaldi, Fracture risk assessment before and after resolution of endogenous hypercortisolism: is the FRAX(R) algorithm useful? J. Endocrinol. Invest. 37, 957–965 (2014). https://doi.org/10.1007/s40618-014-0126-1

    Article  CAS  PubMed  Google Scholar 

  46. I. Chiodini, V. Carnevale, M. Torlontano, S. Fusilli, G. Guglielmi, M. Pileri, S. Modoni, A. Di Giorgio, A. Liuzzi, S. Minisola, M. Cammisa, V. Trischitta, A. Scillitani, Alterations of bone turnover and bone mass at different skeletal sites due to pure glucocorticoid excess: study in eumenorrheic patients with Cushing’s syndrome. J. Clin. Endocrinol. Metab. 83, 1863–1867 (1998). https://doi.org/10.1210/jcem.83.6.4880

    Article  CAS  PubMed  Google Scholar 

  47. N.C. Harvey, C.C. Gluer, N. Binkley, E.V. McCloskey, M.L. Brandi, C. Cooper, D. Kendler, O. Lamy, A. Laslop, B.M. Camargos, J.Y. Reginster, R. Rizzoli, J.A. Kanis, Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78, 216–224 (2015). https://doi.org/10.1016/j.bone.2015.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vinolas, H., Grouthier, V., Mehsen-Cetre, N., Boisson, A., Winzenrieth, R., Schaeverbeke, T., Mesguich, C., Bordenave, L., Tabarin, A. Assessment of vertebral microarchitecture in overt and mild Cushing’s syndrome using trabecular bone score. Clin. Endocrinol. (2018). https://doi.org/10.1111/cen.13743

    Article  Google Scholar 

  49. U. Schafroth, K. Godang, T. Ueland, J.P. Berg, J. Bollerslev, Leptin levels in relation to body composition and insulin concentration in patients with endogenous Cushing’s syndrome compared to controls matched for body mass index. J. Endocrinol. Invest. 23, 349–355 (2000). https://doi.org/10.1007/bf03343737

    Article  CAS  PubMed  Google Scholar 

  50. W. Shen, J. Chen, M. Punyanitya, S. Shapses, S. Heshka, S.B. Heymsfield, MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos. Int. 18, 641–647 (2007). https://doi.org/10.1007/s00198-006-0285-9

    Article  CAS  PubMed  Google Scholar 

  51. C. Di Somma, R. Pivonello, S. Loche, A. Faggiano, P. Marzullo, A. Di Sarno, M. Klain, M. Salvatore, G. Lombardi, A. Colao, Severe impairment of bone mass and turnover in Cushing’s disease: comparison between childhood-onset and adulthood-onset disease. Clin. Endocrinol. 56, 153–158 (2002)

    Article  Google Scholar 

  52. M.C. Vlot, M. den Heijer, R.T. de Jongh, M.G. Vervloet, W.F. Lems, R. de Jonge, B. Obermayer-Pietsch, A.C. Heijboer, Clinical utility of bone markers in various diseases. Bone 114, 215–225 (2018). https://doi.org/10.1016/j.bone.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  53. A. Bazzocchi, G. Garzillo, F. Fuzzi, D. Diano, U. Albisinni, E. Salizzoni, G. Battista, G. Guglielmi, Localizer sequences of magnetic resonance imaging accurately identify osteoporotic vertebral fractures. Bone 61, 158–163 (2014). https://doi.org/10.1016/j.bone.2014.01.013

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by a grant of the Ministry of Education, University and Research of the Italian Government (PRIN 2015 - Grant number 2015ZHKFTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ferraù.

Ethics declarations

Conflict of interest

G.M. received consultant fees by Ipsen and Novartis; A.L. received grants from Ipsen, Pfizer, Novartis and speaker honoraria from Ipsen and Pfizer; S.C. served in medical advisory boards of HRA. The remaining authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraù, F., Giovinazzo, S., Messina, E. et al. High bone marrow fat in patients with Cushing’s syndrome and vertebral fractures. Endocrine 67, 172–179 (2020). https://doi.org/10.1007/s12020-019-02034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02034-4

Keywords

Navigation