Skip to main content
Log in

Hypotestosteronemia is an important factor for the development of hypertension: elevated blood pressure in orchidectomized conscious rats is reversed by different androgens

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Hypotestosteronemia is an aging-associated disease. Little is known about experimental evidence linking androgen deficiency to hypertension. Various androgens are acute vasodilators, both in vitro and in vivo. We aimed to systematically investigate blood pressure (BP) in male normotensive intact or orchidectomized (ORX) Wistar and Wistar-Kyoto rats. Furthermore, we studied the acute antihypertensive responses of testosterone (TES), its precursor (DHEA), or its 5β-reduced metabolite (5β-DHT) in conscious, unrestrained, hypertensive Wistar rats caused by orchidectomy to determine their potency and efficacy. Similarly, the mechanism of their action mediated by nitric oxide (NO) was studied in vivo.

Methods

BP of ORX rats was evaluated weekly for 18 weeks by tail cuff plethysmography. Subsequently, BP of ORX Wistar rats was measured by chronic indwelling vascular catheters, arterial, and venous catheters were implanted under anesthesia for BP recording and androgen administration, respectively. Then, a dose–response curve of each androgen was performed. Likewise, the dose–response curve of 5β-DHT, the most potent androgen, was repeated in the presence of a nonselective NO synthase inhibitor (L-NAME) or an inhibitor of endothelial NO synthesis (Endothelin-1).

Results

ORX rats progressively increased systolic/diastolic BP (167 ± 2.8/141 ± 3.3 mmHg) over 18 weeks. No difference was found between strains. The BP was reduced in a dose-dependent manner caused by i.v. bolus injection of each androgen, with a rank order of potency of: 5β-DHT = DHEA>>TES. Dose-dependent antihypertension induced by 5β-DHT in ORX rats was not abolished in the presence of L-NAME or Endothelin-1.

Conclusions

These in vivo experimental findings reveal that hypotestosteronemia is a determining factor for the development of hypertension which is powerfully reduced by androgen administration, and 5β-DHT induces a potent and effective antihypertensive response by a NO-independent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.M. Haffner, P.A. Newcomb, P.M. Marcus, B.E. Klein, R. Klein, Relation of sex hormones and dehydroepiandrosterone sulfate (DHEA-SO4) to cardiovascular risk factors in postmenopausal women. Am. J. Epidemiol. 142(9), 925–934 (1995)

    Article  CAS  Google Scholar 

  2. L. Wang, M. Szklo, A.R. Folsom, N.R. Cook, S.M. Gapstur, P. Ouyang, Endogenous sex hormones, blood pressure change, and risk of hypertension in postmenopausal women: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 224(1), 228–234 (2012). https://doi.org/10.1016/j.atherosclerosis.2012.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. R. Maranon, J.F. Reckelhoff, Sex and gender differences in control of blood pressure. Clin. Sci. 125(7), 311–318 (2013). https://doi.org/10.1042/CS20130140

    Article  PubMed  PubMed Central  Google Scholar 

  4. B. Ziemens, H. Wallaschofski, H. Volzke, R. Rettig, M. Dorr, M. Nauck, B.G. Keevil, G. Brabant, R. Haring, Positive association between testosterone, blood pressure, and hypertension in women: longitudinal findings from the Study of Health in Pomerania. J. Hypertens. 31(6), 1106–1113 (2013). https://doi.org/10.1097/HJH.0b013e3283603eb1

    Article  CAS  PubMed  Google Scholar 

  5. J.S. Brand, M.M. Rovers, B.B. Yeap, H.J. Schneider, T.P. Tuomainen, R. Haring, G. Corona, A. Onat, M. Maggio, C. Bouchard, P.C. Tong, R.Y. Chen, M. Akishita, J.A. Gietema, M.H. Gannage-Yared, A.L. Unden, A. Hautanen, N.P. Goncharov, P. Kumanov, S.A. Chubb, O.P. Almeida, H.U. Wittchen, J. Klotsche, H. Wallaschofski, H. Volzke, J. Kauhanen, J.T. Salonen, L. Ferrucci, Y.T. van der Schouw, Testosterone, sex hormone-binding globulin and the metabolic syndrome in men: an individual participant data meta-analysis of observational studies. PLoS One 9(7), e100409 (2014). https://doi.org/10.1371/journal.pone.0100409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. B. Daka, T. Rosen, P.A. Jansson, C.A. Larsson, L. Rastam, U. Lindblad, Low sex hormone-binding globulin is associated with hypertension: a cross-sectional study in a Swedish population. BMC Cardiovasc. Disord. 13, 30–37 (2013). https://doi.org/10.1186/1471-2261-13-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. X. Shen, R. Wang, N. Yu, Y. Shi, H. Li, C. Xiong, Y. Li, E.M. Wells, Y. Zhou, Reference ranges and association of age and lifestyle characteristics with testosterone, sex hormone binding globulin, and luteinizing hormone among 1166 western Chinese men. PLoS One 11(12), 1–16 (2016). https://doi.org/10.1371/journal.pone.0164116

    Article  CAS  Google Scholar 

  8. Y. Jiang, J. Ye, M. Zhao, A. Tan, H. Zhang, Y. Gao, Z. Lu, C. Wu, Y. Hu, Q. Wang, X. Yang, Z. Mo, Cross-sectional and longitudinal associations between serum testosterone concentrations and hypertension: results from the Fangchenggang Area Male Health and Examination Survey in China. Clin. Chim. Acta 487, 90–95 (2018). https://doi.org/10.1016/j.cca.2018.08.027

    Article  CAS  PubMed  Google Scholar 

  9. M. Perusquia, C.D. Greenway, L.M. Perkins, J.N. Stallone, Systemic hypotensive effects of testosterone are androgen structure-specific and neuronal nitric oxide synthase-dependent. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309(2), R189–R195 (2015). https://doi.org/10.1152/ajpregu.00110.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Perusquia, N. Herrera, M. Ferrer, J.N. Stallone, Antihypertensive effects of androgens in conscious, spontaneously hypertensive rats. J. Steroid Biochem. Mol. Biol. 167, 106–114 (2017). https://doi.org/10.1016/j.jsbmb.2016.11.016

    Article  CAS  PubMed  Google Scholar 

  11. M. Perusquia, A.E. Hanson, C.M. Meza, C. Kubli, N. Herrera, J.N. Stallone, Antihypertensive responses of vasoactive androgens in an in vivo experimental model of preeclampsia. J. Steroid Biochem. Mol. Biol. 178, 65–72 (2018). https://doi.org/10.1016/j.jsbmb.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  12. M. Perusquia, C.M. Villalon, The vasodepressor effect of androgens in pithed rats: potential role of calcium channels. Steroids 67(13–14), 1021–1028 (2002)

    Article  CAS  Google Scholar 

  13. J. Coyotupa, A.F. Parlow, N. Kovacic, Serum testosterone and dihydrotestosterone levels following orchiectomy in the adult rat. Endocrinology 92(6), 1579–1581 (1973). https://doi.org/10.1210/endo-92-6-1579

    Article  CAS  PubMed  Google Scholar 

  14. N.S. Bhandarkar, S.A. Kumar, J. Martin, L. Brown, S.K. Panchal, Attenuation of metabolic syndrome by EPA/DHA ethyl esters in testosterone-deficient obese rats. Mar. Drugs 16(6), E182 (2018). https://doi.org/10.3390/md16060182

    Article  CAS  PubMed  Google Scholar 

  15. R.A. Fernandes Corrêa, R.F. Ribeiro Júnior, S.B.O. Mendes, P.M. Dos Santos, M.V.A. da Silva, D.F. Silva, I.P. Biral, P.R. de Batista, D.V. Vassallo, A.S. Bittencourt, I. Stefanon, A.A. Fernandes, Testosterone deficiency reduces the effects of late cardiac remodeling after acute myocardial infarction in rats. PLoS One 14(3), e0213351 (2019). https://doi.org/10.1371/journal.pone.0213351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. P. Tep-areenan, D.A. Kendall, M.D. Randall, Testosterone-induced vasorelaxation in the rat mesenteric arterial bed is mediated predominantly via potassium channels. Br. J. Pharmacol. 135(3), 735–740 (2002). https://doi.org/10.1038/sj.bjp.0704522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. K.O. Rowell, J. Hall, P.J. Pugh, T.H. Jones, K.S. Channer, R.D. Jones, Testosterone acts as an efficacious vasodilator in isolated human pulmonary arteries and veins: evidence for a biphasic effect at physiological and supra-physiological concentrations. J. Endocrinol. Invest. 32(9), 718–723 (2009). https://doi.org/10.1007/BF03346526

    Article  CAS  PubMed  Google Scholar 

  18. T.M. Chou, K. Sudhir, S.J. Hutchison, E. Ko, T.M. Amidon, P. Collins, K. Chatterjee, Testosterone induces dilation of canine coronary conductance and resistance arteries in vivo. Circulation 94(10), 2614–2619 (1996)

    Article  CAS  Google Scholar 

  19. C. Molinari, A. Battaglia, E. Grossini, D.A. Mary, C. Vassanelli, G. Vacca, The effect of testosterone on regional blood flow in prepubertal anaesthetized pigs. J. Physiol. 543(1), 365–372 (2002)

    Article  CAS  Google Scholar 

  20. V.P. Deenadayalu, R.E. White, J.N. Stallone, X. Gao, A.J. Garcia, Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. Am. J. Physiol. Heart Circ. Physiol. 281(4), H1720–H1727 (2001). https://doi.org/10.1152/ajpheart.2001.281.4.H1720

    Article  CAS  PubMed  Google Scholar 

  21. M. Perusquía, E. Navarrete, L. Gonzalez, C.M. Villalon, The modulatory role of androgens and progestins in the induction of vasorelaxation in human umbilical artery. Life Sci. 81(12), 993–1002 (2007). https://doi.org/10.1016/j.lfs.2007.07.024

    Article  CAS  PubMed  Google Scholar 

  22. I.D. Wakefield, J.E. March, P.A. Kemp, J.P. Valentin, T. Bennett, S.M. Gardiner, Comparative regional haemodynamic effects of the nitric oxide synthase inhibitors, S-methyl-l-thiocitrulline and L-NAME, in conscious rats. Br. J. Pharmacol. 139(6), 1235–1243 (2003). https://doi.org/10.1038/sj.bjp.0705351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A.K. Oloyo, O.A. Sofola, M.A. Yakubu, Orchidectomy attenuates high-salt diet-induced increases in blood pressure, renovascular resistance, and hind limb vascular dysfunction: role of testosterone. Clin. Exp. Pharm. Physiol. 43(9), 825–833 (2016). https://doi.org/10.1111/1440-1681.12595

    Article  CAS  Google Scholar 

  24. S.Y. Loh, N. Salleh, Influence of testosterone on mean arterial pressure: A physiological study in male and female normotensive WKY and hypertensive SHR rats. Physiol. Int. 104(1), 25–34 (2017). https://doi.org/10.1556/2060.104.2017.1.3

    Article  CAS  PubMed  Google Scholar 

  25. W.N. Rouver, N.T. Delgado, J.B. Menezes, R.L. Santos, M.R. Moyses, Testosterone replacement therapy prevents alterations of coronary vascular reactivity caused by hormone deficiency induced by castration. PLoS One 10(8), e0137111 (2015). https://doi.org/10.1371/journal.pone.0137111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. N.T. Malan, W. Smith, R. von Känel, M. Hamer, A.E. Schutte, L. Malan, Low serum testosterone and increased diastolic ocular perfusion pressure: a risk for retinal microvasculature. Vasa 44(6), 435–443 (2015). https://doi.org/10.1024/0301-1526/a000466

    Article  PubMed  Google Scholar 

  27. K.C.S. Dixit, J. Wu, L.B. Smith, P.W.F. Hadoke, F.C.W. Wu, Androgens and coronary artery disease. In: K.R. Feingold, B. Anawalt, A. Boyce, eds. Endotext [Internet], (MDText.com, Inc., South Dartmouth, MA, 2000–2015)

  28. P. Marin, S. Holmang, L. Jonsson, L. Sjostrom, H. Kvist, G. Holm, G. Lindstedt, P. Bjorntorp, The effects of testosterone treatment on body composition and metabolism in middle-aged obese men. Int J. Obes. Relat. Metab. Disord. 16(12), 991–997 (1992)

    CAS  PubMed  Google Scholar 

  29. P. Marin, S. Holmang, C. Gustafsson, L. Jonsson, H. Kvist, A. Elander, J. Eldh, L. Sjostrom, G. Holm, P. Bjorntorp, Androgen treatment of abdominally obese men. Obes. Res. 1(4), 245–251 (1993). https://doi.org/10.1002/j.1550-8528.1993.tb00618.x

    Article  CAS  PubMed  Google Scholar 

  30. M. Zitzmann, Mechanisms of disease: pharmacogenetics of testosterone therapy in hypogonadal men. Nat. Clin. Pr. Urol. 4(3), 161–166 (2007). https://doi.org/10.1038/ncpuro0706

    Article  CAS  Google Scholar 

  31. P.M. Mah, G.A. Wittert, Obesity and testicular function. Mol. Cell Endocrinol. 316(2), 180–186 (2010). https://doi.org/10.1016/j.mce.2009.06.007

    Article  CAS  PubMed  Google Scholar 

  32. A. Haider, A. Yassin, K.S. Haider, G. Doros, F. Saad, G.M. Rosano, Men with testosterone deficiency and a history of cardiovascular diseases benefit from long-termtestosterone therapy: observational, real-life data from a registry study. Vasc. Health Risk Manag. 12, 251–261 (2016). https://doi.org/10.2147/VHRM.S108947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. C.J. Malkin, P.J. Pugh, R.D. Jones, D. Kapoor, K.S. Channer, T.H. Jones, The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J. Clin. Endocrinol. Metab. 89(7), 3313–3318 (2004). https://doi.org/10.1210/jc.2003-031069

    Article  CAS  PubMed  Google Scholar 

  34. M. Perusquia, Androgen-induced vasorelaxation: a potential vascular protective effect. Exp. Clin. Endocrinol. Diabetes 111(2), 55–59 (2003). https://doi.org/10.1055/s-2003-39229

    Article  CAS  PubMed  Google Scholar 

  35. O. Yildiz, M. Seyrek, Vasodilating mechanisms of testosterone. Exp. Clin. Endocrinol. Diabetes 115(1), 1–6 (2007). https://doi.org/10.1055/s-2007-949657

    Article  CAS  PubMed  Google Scholar 

  36. M. Perusquia, J.N. Stallone, Do androgens play a beneficial role in the regulation of vascular tone? Nongenomic vascular effects of testosterone metabolites. Am. J. Physiol. Heart Circ. Physiol. 298(5), H1301–H1307 (2010). https://doi.org/10.1152/ajpheart.00753.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D.M. Kelly, T.H. Jones, Testosterone: a vascular hormone in health and disease. J. Endocrinol. 217(3), R47–R71 (2013). https://doi.org/10.1530/JOE-12-0582

    Article  CAS  PubMed  Google Scholar 

  38. R.F. Furchgott, J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376 (1980)

    Article  CAS  Google Scholar 

  39. S. Moncada, R.M. Palmer, E.A. Higgs, Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43(2), 109–142 (1991)

    CAS  PubMed  Google Scholar 

  40. S.L. Bourque, S.T. Davidge, M.A. Adams, The interaction between endothelin-1 and nitric oxide in the vasculature: new perspectives. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300(6), R1288–R1295 (2011). https://doi.org/10.1152/ajpregu.00397.2010

    Article  CAS  PubMed  Google Scholar 

  41. M. Perusquía, C.M. Villalón, Possible role of Ca2+ channels in the vasodilating effect of 5beta-dihydrotestosterone in rat aorta. Eur. J. Pharmacol. 371(2–3), 169–178 (1999). https://doi.org/10.1016/S0014-2999(99)00161-2

    Article  PubMed  Google Scholar 

  42. R.D. Jones, K.M. English, P.J. Pugh, A.H. Morice, T.H. Jones, K.S. Channer, Pulmonary vasodilatory action of testosterone: evidence of a calcium antagonistic action. J. Cardiovasc. Pharmacol. 39(6), 814–823 (2002)

    Article  CAS  Google Scholar 

  43. J. Navarro-Dorado, L.M. Orensanz, P. Recio, S. Bustamante, S. Benedito, A.C. Martínez, A. García-Sacristán, D. Prieto, M. Hernández, Mechanisms involved in testosterone-induced vasodilatation in pig prostatic small arteries. Life Sci. 83, 569–573 (2008). https://doi.org/10.1016/j.lfs.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  44. M. Perusquía, J. Espinoza, L.M. Montaño, J.N. Stallone, Regional differences in the vasorelaxing effects of testosterone and its 5-reduced metabolites in the canine vasculature. Vasc. Pharmacol. 56(3–4), 176–182 (2012). https://doi.org/10.1016/j.vph.2012.01.008

    Article  CAS  Google Scholar 

  45. J. Hall, R.D. Jones, T.H. Jones, K.S. Channer, C. Peers, Selective inhibition of L-type Ca2+ channels in A7r5 cells by physiological levels of testosterone. Endocrinology 147(6), 2675–2680 (2006). https://doi.org/10.1210/en.2005-1243

    Article  CAS  PubMed  Google Scholar 

  46. J.L. Scragg, R.D. Jones, K.S. Channer, T.H. Jones, C. Peers, Testosterone is a potent inhibitor of L-type Ca(2+) channels. Biochem. Biophys. Res. Commun. 318(2), 503–506 (2004). https://doi.org/10.1016/j.bbrc.2004.04.054

    Article  CAS  PubMed  Google Scholar 

  47. J.L. Scragg, M.L. Dallas, C. Peers, Molecular requirements for L-type Ca2+ channel blockade by testosterone. Cell Calcium 42, 11–15 (2007). https://doi.org/10.1016/j.ceca.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  48. L.M. Montaño, E. Calixto, A. Figueroa, E. Flores-Soto, V. Carbajal, M. Perusquia, Relaxation of androgens on rat thoracic aorta: testosterone concentration dependent agonist/antagonist L-type Ca2+ channel activity, and 5beta-dihydrotestosterone restricted to L-type Ca2+ channel blockade. Endocrinology 149(5), 2517–2526 (2008). https://doi.org/10.1210/en.2007-1288

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant from Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica-UNAM (PAPIIT), grant number IN203815 to M.P.

Author contributions

M.P., N.H., D.C. were involved of acquisition data. M.P. conceived and designed the study, analyzed and interpreted the data, and drafted the article also. All authors contributed to the revising of the manuscript, and approved the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Perusquía.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All protocols were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) at the Institute for Biomedical Research, UNAM.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perusquía, M., Contreras, D. & Herrera, N. Hypotestosteronemia is an important factor for the development of hypertension: elevated blood pressure in orchidectomized conscious rats is reversed by different androgens. Endocrine 65, 416–425 (2019). https://doi.org/10.1007/s12020-019-01978-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01978-x

Keywords

Navigation