Advertisement

Endocrine

pp 1–18 | Cite as

Liraglutide modulates adipokine expression during adipogenesis, ameliorating obesity, and polycystic ovary syndrome in mice

  • Anusha Singh
  • Joseph R. D. Fernandes
  • Gagan Chhabra
  • Amitabh Krishna
  • Arnab BanerjeeEmail author
Original Article
  • 98 Downloads

Abstract

Purpose

The incidence of obesity is increasing among all age groups throughout the world and it is highly associated with numerous other metabolic disorders, such as insulin resistance, polycystic ovarian syndrome (PCOS) etc.

Methods and Results

Using in vitro and in vivo approach, this study investigated the adipokine profile after liraglutide on differentiated murine 3T3-L1 pre-adipocytes. Effect of liraglutide on DHEA-induced PCOS mice were investigated. This study showed Liraglutide treatment resulted in up-regulation of adiponectin and IL-6 along with down-regulation of ICAM 1 in differentiated 3T3-L1 cells. Liraglutide in absence of other differentiating factors, significantly increased glucose, lipid uptake and PPARγ, C/EBPα expression in the adipocytes suggesting its ability to solely promote pre-adipocyte differentiation into mature adipocyte. Liraglutide treatment showed increased adiponectin expression and decreased number of cystic follicles, body weight, circulating glucose, triglyceride and testosterone levels in comparison to the PCOS induced mice.

Conclusion

This study suggests that adiponectin may act as a link between metabolic disorders and PCOS and that liraglutide might be a promising therapeutic agent for the treatment of PCOS in addition to obesity and insulin resistance.

Highlights

  • The study shows the impact of GLP-1 analogue, liraglutide’s impact on adipokine secretion in 3T3L1 adipocytes.

  • For the first time, showing that liraglutide in the absence of other differentiating factors (IBMX, insulin, and dexamethasone), significantly increased glucose, lipid uptake and PPARγ, C/EBPα expression in the adipocytes suggesting its ability to solely promote pre-adipocyte differentiation into mature adipocyte.

  • Also, for the first time it shows that liraglutide through the up-regulation of adiponectin manages PCOS in mice.

Keywords

Liraglutide Adipocyte Adiponectin PCOS 

Notes

Acknowledgements

BITS RIG financial assistance is acknowledged. A.S. acknowledges University Grant Commission, India for providing research fellowship. J.R.D.F. acknowledges SERB for financial assistance.

Author contributions

A.S. did the animal-related work and wrote the manuscript. J.R.D.F. did the cell differentiation, partial IHC, and wrote, edited the manuscript. G.C. did the adipokine array work and edited the manuscript. A.K. edited the manuscript. A.B. planned the work and edited the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All animal experimentation and procedures were approved by the Institutional Animal Ethics committee of Birla Institute of Technology and Science (BITS) Pilani Rajasthan, Reference number IAEC/REC/19/21.

References

  1. 1.
    D.S. Gedam, Childhood obesity—challenges in the Indian scenario. Int. J. Med. Res. Rev. 1(1), 1–4 (2013).Google Scholar
  2. 2.
    C.S. Elangbam, Current strategies in the development of anti-obesity drugs and their safety concerns. Vet. Pathol. 46(1), 10–24 (2009)CrossRefGoogle Scholar
  3. 3.
    E.D. Rosen, O.A. MacDougald, Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7(12), 885–896 (2006)CrossRefGoogle Scholar
  4. 4.
    B. Gustafson, A. Hammarstedt, C.X. Andersson, U. Smith, Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27(11), 2276–2283 (2007)CrossRefGoogle Scholar
  5. 5.
    P. Isakson, A. Hammarstedt, B. Gustafson, U. Smith, Impaired preadipocyte differentiation in human abdominal obesity role of Wnt, tumor necrosis factor-α, and inflammation. Diabetes 58(7), 1550–1557 (2009)CrossRefGoogle Scholar
  6. 6.
    L. Hutley, J.B. Prins, Fat as an endocrine organ: relationship to the metabolic syndrome. Am. J. Med. Sci. 330(6), 280–289 (2005)CrossRefGoogle Scholar
  7. 7.
    J.J. Holst, The physiology of glucagon-like peptide 1. Physiol. Rev. 87(4), 1409–1439 (2007)CrossRefGoogle Scholar
  8. 8.
    Y. Huang, G.F. Wilkinson, G.B. Willars, Role of the signal peptide in the synthesis and processing of the glucagon-like peptide-1 receptor. Br. J. Pharmacol. 159(1), 237–251 (2010)CrossRefGoogle Scholar
  9. 9.
    Y. Li, D. Tweedie, M.P. Mattson, H.W. Holloway, N.H. Greig, Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J. Neurochem. 113(6), 1621–1631 (2010)Google Scholar
  10. 10.
    J. Quoyer, C. Longuet, C. Broca, N. Linck, S. Costes, E. Varin et al. GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells. J. Biol. Chem. 285(3), 1989–2002 (2010)CrossRefGoogle Scholar
  11. 11.
    M.E.J. Lean, D. Malkova, Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence?. Int. J. Obes. 3(1), 35–42 (2015)Google Scholar
  12. 12.
    K. Ban, K.H. Kim, C.K. Cho, M. Sauve, E.P. Diamandis, P.H. Backx et al. Glucagon-like peptide (GLP)-1(9–36) amide-mediated cytoprotection is blocked by exendin (9–39) yet does not require the known GLP-1 receptor. Endocrinology 151, 1520–1531 (2010)CrossRefGoogle Scholar
  13. 13.
    S.X. Wang, Y. Xie, X. Zhou, W.W. Sha, W.L. Wang, L.P. Han et al. Effect of glucagon-like peptide-1 on hypoxia-reoxygenation induced injury in neonatal rat cardiomyocytes. Zhonghua Xin Xue Guan Bing Za Zhi 38, 72–75 (2010)Google Scholar
  14. 14.
    S. Ravassa, A. Zudaire, R.D. Carr, J. Diez, Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 300, H1361–H1372 (2011)CrossRefGoogle Scholar
  15. 15.
    X. Shi, F. Zhou, X. Li et al. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons. Cell Metab. 18(1), 86–98 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Bregenholt, A. Møldrup, N. Blume, A.E. Karlsen, B.N. Friedrichsen, D. Tornhave et al. The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits β-cell apoptosis in vitro. Biochem. Biophys. Res. Commun. 330(2), 577–584 (2005)CrossRefGoogle Scholar
  17. 17.
    A. Mari, K. Degn, B. Brock, J. Rungby, E. Ferrannini, O. Schmitz, Effects of the long-acting human glucagon-like peptide-1 analog liraglutide on beta-cell function in normal living conditions. Diabetes Care 30(8), 2032–2033 (2007)CrossRefGoogle Scholar
  18. 18.
    L. Li, Z. Miao, R. Liu, M. Yang, H. Liu, G. Yang, Liraglutide prevents hypoadiponectinemia-induced insulin resistance and alterations of gene expression involved in glucose and lipid metabolism. Mol. Med. 17(11–12), 1168 (2011)Google Scholar
  19. 19.
    T.D. Challa, N. Beaton, M. Arnold, G. Rudofsky, W. Langhans, C. Wolfrum, Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J. Biol. Chem. 287(9), 6421–6430 (2012)CrossRefGoogle Scholar
  20. 20.
    G. Díaz-Soto, D.A. de Luis, R. Conde-Vicente, O. Izaola-Jauregui, C. Ramos, E. Romero, Beneficial effects of liraglutide on adipocytokines, insulin sensitivity parameters and cardiovascular risk biomarkers in patients with Type 2 diabetes: a prospective study. Diabetes Res. Clin. Pract. 104(1), 92–96 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Nylander, S. Frøssing, H.V. Clausen, C. Kistorp, J. Faber, S.O. Skouby, Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: a randomized clinical trial. Reprod. Biomed. Online 35(1), 121–127 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Frøssing, M. Nylander, E. Chabanova, J. Frystyk, J.J. Holst, C. Kistorp et al. Effect of liraglutide on ectopic fat in polycystic ovary syndrome: a randomized clinical trial. ‎Diabetes Obes. Metab. 20(1), 215–218 (2018)CrossRefGoogle Scholar
  23. 23.
    C.B. Rasmussen, S. Lindenberg, The effect of liraglutide on weight loss in women with polycystic ovary syndrome: an observational study. Front. Endocrinol. 5, 140 (2014)CrossRefGoogle Scholar
  24. 24.
    X. Li, L. Jiang, M. Yang, Y.W. Wu, S.X. Sun, J.Z. Sun, CTRP3 modulates the expression and secretion of adipokines in 3T3-L1 adipocytes. Endocr. J. pp. EJ14–0161 (2014)Google Scholar
  25. 25.
    D. Suzuki, M. Toyoda, M. Kimura, M. Miyauchi, N. Yamamoto, H. Sato, Effects of liraglutide, a human glucagon-like peptide-1 analogue, on body weight, body fat area and body fat-related markers in patients with type 2 diabetes mellitus. Intern. Med. 52(10), 1029–1034 (2013)CrossRefGoogle Scholar
  26. 26.
    D. Li, X. Xu, Y. Zhang, J. Zhu, L. Ye, K.O. Lee, J. Ma, Liraglutide treatment causes upregulation of adiponectin and downregulation of resistin in Chinese type 2 diabetes. Diabetes Res. Clin. Pract. Suppl. 110(2), 224–228 (2015)CrossRefGoogle Scholar
  27. 27.
    I.F. Stein, M.L. Leventhal, Amenorrhea associated with bilateral polycystic ovaries. Am. J. Obstet. Gynecol. 29(2), 181–191 (1935)CrossRefGoogle Scholar
  28. 28.
    A. Gambineri, C. Pelusi, V. Vicennati, U. Pagotto, R. Pasquali, Obesity and the polycystic ovary syndrome. Int. J. Obes. Relat. Metab. Disord. 26(7), 883–896 (2002)CrossRefGoogle Scholar
  29. 29.
    A. Dunaif, Insulin action in the polycystic ovary syndrome. Endocrinol. Metab. Clin. North Am. 28(2), 341–359 (1999)CrossRefGoogle Scholar
  30. 30.
    S.S. Mirza, K. Shafique, A.R. Shaikh, N.A. Khan, M.A. Qureshi, Association between circulating adiponectin levels and polycystic ovarian syndrome. J. Ovarian Res. 7(1), 18 (2014)CrossRefGoogle Scholar
  31. 31.
    P.F. Svendsen, L. Nilas, S. Madsbad, J.J. Holst, Incretin hormone secretion in women with polycystic ovary syndrome: roles of obesity, insulin sensitivity, and treatment with metformin. Metabolism 58(5), 586–593 (2009)CrossRefGoogle Scholar
  32. 32.
    K. Aydin, G. Arusoglu, G. Koksal, N. Cinar, A.D. Yazgan, B.O. Yildiz, Fasting and post‐prandial glucagon like peptide 1 and oral contraception in polycystic ovary syndrome. Clin. Endocrinol. 81(4), 588–592 (2014)CrossRefGoogle Scholar
  33. 33.
    A.H. Balen, L.C. Morley, M. Misso, S. Franks, R.S. Legro, C.N. Wijeyaratne, E. Stener-Victorin et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum. Reprod. Update 22, 687–708 (2016)Google Scholar
  34. 34.
    M. Jensterle, T. Kocjan, A. Janez, Phosphodiesterase 4 inhibition as a potential new therapeutic target in obese women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 99(8), 1476–1481 (2014)CrossRefGoogle Scholar
  35. 35.
    M.J. Sever, T. Kocjan, M. Pfeifer, N.A. Kravos, A. Janez, Short-term combined treatment with liraglutide and metformin leads to significant weight loss in obese women with polycystic ovary syndrome and previous poor response to metformin. Eur. J. Endocrinol. 170, 451–459 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Yaba, N. Demir, The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS). J. Ovarian Res. 5(1), 38 (2012)CrossRefGoogle Scholar
  37. 37.
    A. Singh, P. Bora, A. Krishna, Direct action of adiponectin ameliorates increased androgen synthesis and reduces insulin receptor expression in the polycystic ovary. Biochem. Biophys. Res. Commun. 488, 509–515 (2017)CrossRefGoogle Scholar
  38. 38.
    P. Singh, R.K. Srivastava, A. Krishna, Effects of gonadotropin-releasing hormone agonist and antagonist on ovarian activity in a mouse model for polycystic ovary. J. Steroid Biochem. Mol. Biol. 163, 35–44 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Singh, A. Krishna, Localization of adiponectin and its receptor and its possible roles in the ovary of a vespertilionid bat, Scotophilus heathi. Gen. Comp. Endocrinol. 176, 240–251 (2012)CrossRefGoogle Scholar
  40. 40.
    A. Singh, P. Bora, A. Krishna, Systemic adiponectin treatment reverses polycystic ovary syndrome-like features in an animal model. Reprod. Fertil. Dev. 30(4), 571–584 (2017)CrossRefGoogle Scholar
  41. 41.
    E. Leinonen, E. Hurt-Camejo, O. Wiklund, L.M. Hultén, A. Hiukka, M.R. Taskinen, Insulin resistance and adiposity correlate with acute-phase reaction and soluble cell adhesion molecules in type 2 diabetes. Atherosclerosis 166(2), 387–394 (2003)CrossRefGoogle Scholar
  42. 42.
    M. Straczkowski, S. Dzienis-Straczkowska, A. Stêpieñ, I. Kowalska, M. Szelachowska, I. Kinalska, Plasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-α system. J. Clin. Endocrinol. Metab. 87(10), 4602–4606 (2002)CrossRefGoogle Scholar
  43. 43.
    H. Chen, D. Simar, K. Pegg, S. Saad, C. Palmer, M.J. Morris, Exendin-4 is effective against metabolic disorders induced by intrauterine and postnatal overnutrition in rodents. Diabetologia 57(3), 614–622 (2014)CrossRefGoogle Scholar
  44. 44.
    R. Shirazi, V. Palsdottir, J. Collander, F. Anesten, H. Vogel, F. Langlet et al. Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. ‎Proc. Natl. Acad. Sci. U.S.A. 110(40), 16199–16204 (2013)CrossRefGoogle Scholar
  45. 45.
    L.B. Knudsen, P.F. Nielsen, P.O. Huusfeldt, N.L. Johansen, K. Madsen, F.Z. Pedersen et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J. Med. Chem. 43(9), 1664–1669 (2000)CrossRefGoogle Scholar
  46. 46.
    T. Vilsboll, M. Zdravkovic, T. Le-thim, T. Krarup, O. Schmitz, J. Courreges et al. Liraglutide significantly improves glycemic control, and lowers body weight without risk of either major or minor hypoglycaemic episodes in subjects with Type 2 diabetes. Diabetes 30(6), 1608–1610 (2006)Google Scholar
  47. 47.
    A.H. Berg, P.E. Scherer, Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 96, 939–949 (2005)CrossRefGoogle Scholar
  48. 48.
    O. Dubuisson, E.J. Dhurandhar, R. Krishnapuram, H. Kirk-Ballard, A.K. Gupta, V. Hegde et al. PPAR gamma-independent increase in glucose uptake and adiponectin abundance in fat cells. Endocrinology 152, 3649–3660 (2011)CrossRefGoogle Scholar
  49. 49.
    J.M. Lehmann, L.B. Moore, T.A. Smith-Oliver, W.O. Wilkison, T.M. Willson, S.A. Kliewer, An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem. 270, 12953–12956 (1995)CrossRefGoogle Scholar
  50. 50.
    T. Hasegawa, K. Oizumi, Y. Yoshiko, K. Tanne, N. Maeda, J.E. Aubin, The PPAR gamma-selective ligand BRL-49653 differentially regulates the fate choices of rat calvaria versus rat bone marrow stromal cell populations. BMC Dev. Biol. 8, 71 (2008)CrossRefGoogle Scholar
  51. 51.
    D. Wang, A. Haile, L.C. Jones, Rosiglitazone-induced adipogenesis in a bone marrow mesenchymal stem cell line. Biomed. Sci. Instrum. 47, 213–221 (2011)Google Scholar
  52. 52.
    K.G. Michalakis, J.H. Segars, The role of adiponectin in reproduction: from polycystic ovary syndrome to assisted reproduction. Fertil. Steril. 94(6), 1949–1957 (2010)CrossRefGoogle Scholar
  53. 53.
    X. Chen, X. Jia, J. Qiao, Y. Guan, J. Kang, Adipokines in reproductive function: a link between obesity and polycystic ovary syndrome. J. Mol. Endocrinol. 50(2), 21–37 (2013)CrossRefGoogle Scholar
  54. 54.
    R.E. Pasquali, F.R. Casimirri, R.O. De Iasio, P.A. Mesini, S.T. Boschi, R.O. Chierici, R.I. Flamia, M.I. Biscotti, V.A. Vicennati, Insulin regulates testosterone and sex hormone-binding globulin concentrations in adult normal weight and obese men. J. Clin. Endocrinol. Metab. 80(2), 654–658 (1995)Google Scholar
  55. 55.
    M. Jensterle, N.A. Kravos, K. Goričar, A. Janez, Short-term effectiveness of low dose liraglutide in combination with metformin versus high dose liraglutide alone in treatment of obese PCOS: randomized trial. BMC Endocr. Disord. 17(1), 5 (2017)CrossRefGoogle Scholar
  56. 56.
    X. Yuan, T. Hu, H. Zhao, Y. Huang, R. Ye, J. Lin et al. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. ‎Proc. Natl. Acad. Sci. U.S.A. 113(10), 2708–2713 (2016)CrossRefGoogle Scholar
  57. 57.
    P.A. Vardhana, C. Dicken, D.V. Tortoriello, M. Chu, E. Carmina, R.A. Lobo, Increasing adiposity in normal ovulatory women affects adipocytokine expression in subcutaneous and visceral abdominal fat. Int. J. Gynaecol. Obstet. 104(2), 121–124 (2009)CrossRefGoogle Scholar
  58. 58.
    S.W. Groth, Adiponectin and polycystic ovary syndrome. Biol. Res. Nurs. 12(1), 62–72 (2010)CrossRefGoogle Scholar
  59. 59.
    C. Wang, X. Mao, L. Wang, M. Liu, M.D. Wetzel, K.L. Guan et al. Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1. ‎J. Biol. Chem. 282(11), 7991–7996 (2007)CrossRefGoogle Scholar
  60. 60.
    Y. Fu, N. Luo, R.L. Klein, W.T. Garvey, Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46(7), 1369–1379 (2005)CrossRefGoogle Scholar
  61. 61.
    M.A. Edson, A.K. Nagaraja, M.M. Matzuk, The mammalian ovary from genesis to revelation. Endocr. Rev. 30, 624–712 (2009)CrossRefGoogle Scholar
  62. 62.
    S. Cecconi, G. Rossi, M. De Felici, R. Colonna, Mammalian oocyte growth in vitro is stimulated by soluble factor(s) produced by preantral granulosa cells and by Sertoli cells. Mol. Reprod. Dev. 44, 540–546 (1996)CrossRefGoogle Scholar
  63. 63.
    S. Cecconi, C. Ciccarelli, M. Barberi, G. Macchiarelli, R. Canipari, Granulosa cell–oocyte interactions. Eur. J. Obstet. Gynecol. Reprod. Biol. 115(Suppl 1), S19–S22 (2004)CrossRefGoogle Scholar
  64. 64.
    R. Canipari, V. Cellini, S. Cecconi, The ovary feels fine when paracrine and autocrine networks cooperate with gonadotropins in the regulation of folliculogenesis. Curr. Pharm. Des. 18, 245–255 (2012)CrossRefGoogle Scholar
  65. 65.
    P. Reddy, D. Adhikari, W.J. Zheng, S. Liang, T. Hamalainen, V. Tohonen et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum. Mol. Genet. 18, 2813–2824 (2009)CrossRefGoogle Scholar
  66. 66.
    A. Iwase, M. Goto, T. Harata, S. Takigawa, T. Nakahara, K. Suzuki et al. Insulin attenuates the insulin-like growth factor-I (IGFI)-Akt pathway, not IGF-I-extracellularly regulated kinase pathway, in luteinized granulosa cells with an increase in PTEN. J. Clin. Endocrinol. Metab. 94, 2184–2191 (2009)CrossRefGoogle Scholar
  67. 67.
    S. Fukuda, M. Orisaka, K. Tajima, K. Hattori, F. Kotsuji, Luteinizing hormone-induced Akt phosphorylation and androgen production are modulated by MAP Kinase in bovine theca cells. J. Ovarian Res. 2(1), 17 (2009)CrossRefGoogle Scholar
  68. 68.
    F. Qu, F.F. Wang, X.E. Lu, M.Y. Dong, J.Z. Sheng, P.P. Lv et al. Altered aquaporin expression in women with polycystic ovary syndrome: hyperandrogenism in follicular fluid inhibits aquaporin-9 in granulosa cells through the phosphatidylinositol 3-kinase pathway. Hum. Reprod. 25(6), 1441–1450 (2010)CrossRefGoogle Scholar
  69. 69.
    M.E. Hunzicker-Dunn, B. Lopez-Biladeau, N.C. Law, S.E. Fiedler, D.W. Carr, E.T. Maizels, PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc. Natl. Acad. Sci. U.S.A. 109(44), E2979–E2988 (2012)CrossRefGoogle Scholar
  70. 70.
    I. Hers, E.E. Vincent, J.M. Tavare, Akt signalling in health and disease. Cell. Signal. 23, 1515–1527 (2011)CrossRefGoogle Scholar
  71. 71.
    F. Comim, S. Stubbs, K. Hardy, S. Franks, Localisation of adiponectin receptors in normal and polycystic ovaries. Endocr. Abstr. 21, 317 (2010)Google Scholar
  72. 72.
    T. Kadowaki, T. Yamauchi, Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ZoologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Biological SciencesBITS Pilani KK Birla Goa CampusGoaIndia
  3. 3.Department of DermatologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations