Skip to main content

Advertisement

Log in

Targeted next-generation sequencing in papillary thyroid carcinoma patients looking for germline variants predisposing to the disease

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purposess

The purpose of this study was using next-generation sequencing technique to explore the potential association between germline variants of 14 targeted genes and papillary thyroid carcinoma (PTC) predisposition as well as disease progression.

Methods

In all, 516 subjects were enrolled in this study including 416 PTC patients and 100 healthy controls. PTC patients were divided into distant metastasis group and non-distant metastasis group. Patients in distant metastasis group were further divided into radioiodine-refractory PTC (RR-PTC) and non-RR-PTC depending on their response to radioiodine therapy. Genomic DNA was extracted from peripheral blood sample and MiSeq Benchtop Sequencer was used for sequencing.

Results

We found rs11246050 in NLRP6 (dominant model, OR/95% CI: 2.028/1.091–3.769, p = 0.025), rs2286742 and rs3740530 in HABP2 (recessive model, OR/95% CI: 9.644/1.307–71.16, p = 0.026 and 3.989/1.413–11.26, p = 0.009), rs2736098 in TERT (recessive model, OR/95% CI: 2.322/1.028–5.242. p = 0.042) and rs62054619 in GAS8-AS1 (recessive model, OR/95% CI: 2.219/1.067–4.617, p = 0.033) were associated with the risk of PTC. rs1137282 in KRAS (dominant model, OR/95% CI: 0.5430/0.3192–0.9236, p = 0.024), rs1347591 and rs4461062 in NUP93 (dominant model, OR/95% CI: 0.6121/0.4128–0.9076, p = 0.015 and 0.6156/0.4157–0.9117, p = 0.015) were associated with low risk of distant metastatic disease in PTC patients. rs33954691 in TERT was associated with the risk of RR-PTC under dominant model (OR/95% CI: 3.161/1.596–6.262).

Conclusions

Germline variants of related genes could be associated with the susceptibility of PTC as well as disease progression (distant metastasis and radioiodine-refractory status). However, these results must be further verified and the potential biological functions of these germline variants in the pathogenesis of PTC remain to be determined in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Z.L. Qiu, H.J. Song, Y.H. Xu, Q.Y. Luo, Efficacy and survival analysis of 131I therapy for bone metastases from differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 96(10), 3078–3086 (2011). https://doi.org/10.1210/jc.2011-0093

    Article  CAS  PubMed  Google Scholar 

  2. C.T. Shen, Z.L. Qiu, Q.Y. Luo, Sorafenib in the treatment of radioiodine-refractory differentiated thyroid cancer: a meta-analysis. Endocr. Relat. Cancer 21(2), 253–261 (2014). https://doi.org/10.1530/ERC-13-0438

    Article  CAS  PubMed  Google Scholar 

  3. H.J. Song, Z.L. Qiu, C.T. Shen, W.J. Wei, Q.Y. Luo, Pulmonary metastases in differentiated thyroid cancer: efficacy of radioiodine therapy and prognostic factors. Eur. J. Endocrinol. 173(3), 399–408 (2015). https://doi.org/10.1530/EJE-15-0296

    Article  CAS  PubMed  Google Scholar 

  4. J. Gudmundsson, P. Sulem, D.F. Gudbjartsson, J.G. Jonasson, A. Sigurdsson, J.T. Bergthorsson, H. He, T. Blondal, F. Geller, M. Jakobsdottir, D.N. Magnusdottir, S. Matthiasdottir, S.N. Stacey, O.B. Skarphedinsson, H. Helgadottir, W. Li, R. Nagy, E. Aguillo, E. Faure, E. Prats, B. Saez, M. Martinez, G.I. Eyjolfsson, U.S. Bjornsdottir, H. Holm, K. Kristjansson, M.L. Frigge, H. Kristvinsson, J.R. Gulcher, T. Jonsson, T. Rafnar, H. Hjartarsson, J.I. Mayordomo, A. de la Chapelle, J. Hrafnkelsson, U. Thorsteinsdottir, A. Kong, K. Stefansson, Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat. Genet. 41(4), 460–464 (2009). https://doi.org/10.1038/ng.339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Takahashi, V.A. Saenko, T.I. Rogounovitch, T. Kawaguchi, V.M. Drozd, H. Takigawa-Imamura, N.M. Akulevich, C. Ratanajaraya, N. Mitsutake, N. Takamura, L.I. Danilova, M.L. Lushchik, Y.E. Demidchik, S. Heath, R. Yamada, M. Lathrop, F. Matsuda, S. Yamashita, The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl. Hum. Mol. Genet. 19(12), 2516–2523 (2010). https://doi.org/10.1093/hmg/ddq123

    Article  CAS  PubMed  Google Scholar 

  6. J. Gudmundsson, P. Sulem, D.F. Gudbjartsson, J.G. Jonasson, G. Masson, H. He, A. Jonasdottir, A. Sigurdsson, S.N. Stacey, H. Johannsdottir, H.T. Helgadottir, W. Li, R. Nagy, M.D. Ringel, R.T. Kloos, M.C. de Visser, T.S. Plantinga, M. den Heijer, E. Aguillo, A. Panadero, E. Prats, A. Garcia-Castano, A. De Juan, F. Rivera, G.B. Walters, H. Bjarnason, L. Tryggvadottir, G.I. Eyjolfsson, U.S. Bjornsdottir, H. Holm, I. Olafsson, K. Kristjansson, H. Kristvinsson, O.T. Magnusson, G. Thorleifsson, J.R. Gulcher, A. Kong, L.A. Kiemeney, T. Jonsson, H. Hjartarson, J.I. Mayordomo, R.T. Netea-Maier, A. de la Chapelle, J. Hrafnkelsson, U. Thorsteinsdottir, T. Rafnar, K. Stefansson, Discovery of common variants associated with low TSH levels and thyroid cancer risk. Nat. Genet. 44(3), 319–322 (2012). https://doi.org/10.1038/ng.1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. H.Y. Son, Y. Hwangbo, S.K. Yoo, S.W. Im, S.D. Yang, S.J. Kwak, M.S. Park, S.H. Kwak, S.W. Cho, J.S. Ryu, J. Kim, Y.S. Jung, T.H. Kim, S.J. Kim, K.E. Lee, D.J. Park, N.H. Cho, J. Sung, J.S. Seo, E.K. Lee, Y.J. Park, J.I. Kim, Genome-wide association and expression quantitative trait loci studies identify multiple susceptibility loci for thyroid cancer. Nat. Commun. 8, 15966 (2017). https://doi.org/10.1038/ncomms15966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y.L. Wang, S.H. Feng, S.C. Guo, W.J. Wei, D.S. Li, Y. Wang, X. Wang, Z.Y. Wang, Y.Y. Ma, L. Jin, Q.H. Ji, J.C. Wang, Confirmation of papillary thyroid cancer susceptibility loci identified by genome-wide association studies of chromosomes 14q13, 9q22, 2q35 and 8p12 in a Chinese population. J. Med. Genet. 50(10), 689–695 (2013). https://doi.org/10.1136/jmedgenet-2013-101687

    Article  CAS  PubMed  Google Scholar 

  9. M. Matsuse, M. Takahashi, N. Mitsutake, E. Nishihara, M. Hirokawa, T. Kawaguchi, T. Rogounovitch, V. Saenko, A. Bychkov, K. Suzuki, K. Matsuo, K. Tajima, A. Miyauchi, R. Yamada, F. Matsuda, S. Yamashita, The FOXE1 and NKX2-1 loci are associated with susceptibility to papillary thyroid carcinoma in the Japanese population. J. Med. Genet. 48(9), 645–648 (2011). https://doi.org/10.1136/jmedgenet-2011-100063

    Article  CAS  PubMed  Google Scholar 

  10. S. Liyanarachchi, A. Wojcicka, W. Li, M. Czetwertynska, E. Stachlewska, R. Nagy, K. Hoag, B. Wen, R. Ploski, M.D. Ringel, I. Kozlowicz-Gudzinska, W. Gierlikowski, K. Jazdzewski, H. He, A. de la Chapelle, Cumulative risk impact of five genetic variants associated with papillary thyroid carcinoma. Thyroid 23(12), 1532–1540 (2013). https://doi.org/10.1089/thy.2013.0102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A.M. Jones, K.M. Howarth, L. Martin, M. Gorman, R. Mihai, L. Moss, A. Auton, C. Lemon, H. Mehanna, H. Mohan, S.E. Clarke, J. Wadsley, E. Macias, A. Coatesworth, M. Beasley, T. Roques, C. Martin, P. Ryan, G. Gerrard, D. Power, C. Bremmer, T. Consortium, I. Tomlinson, L.G. Carvajal-Carmona, Thyroid cancer susceptibility polymorphisms: confirmation of loci on chromosomes 9q22 and 14q13, validation of a recessive 8q24 locus and failure to replicate a locus on 5q24. J. Med. Genet. 49(3), 158–163 (2012). https://doi.org/10.1136/jmedgenet-2011-100586

    Article  CAS  PubMed  Google Scholar 

  12. H. He, W. Li, S. Liyanarachchi, Y. Wang, L. Yu, L.K.Genutis, S. Maharry, J.E. Phay, R. Shen, P. Brock, A. de la Chapelle, The role of NRG1 in the predisposition to papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. (2017). https://doi.org/10.1210/jc.2017-01798

  13. S.K. Gara, L. Jia, M.J. Merino, S.K. Agarwal, L. Zhang, M. Cam, D. Patel, E. Kebebew, Germline HABP2 mutation causing familial nonmedullary thyroid cancer. N. Engl. J. Med. 373(5), 448–455 (2015). https://doi.org/10.1056/NEJMoa1502449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. T. Zhang, M. Xing, HABP2 G534E mutation in familial nonmedullary thyroid cancer. J. Natl. Cancer Inst. 108(6), djv415 (2016). https://doi.org/10.1093/jnci/djv415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Kowalik, D. Gasior-Perczak, M. Gromek, M. Siolek, A. Walczyk, I. Palyga, M. Chlopek, J. Kopczynski, R. Mezyk, A. Kowalska, S. Gozdz, The p.G534E variant of HABP2 is not associated with sporadic papillary thyroid carcinoma in a Polish population. Oncotarget 8(35), 58304–58308 (2017). https://doi.org/10.18632/oncotarget.16870

    Article  PubMed  PubMed Central  Google Scholar 

  16. L.E.B. de Mello, A.N. Araujo, C.X. Alves, F.J.P. de Paiva, J. Brandao-Neto, J.M. Cerutti, The G534E variant in HABP2 is not associated with increased risk of familial nonmedullary thyroid cancer in Brazilian Kindreds. Clin. Endocrinol. 87(1), 113–114 (2017). https://doi.org/10.1111/cen.13352

    Article  CAS  Google Scholar 

  17. C. Colombo, M. Muzza, M.C. Proverbio, G. Ercoli, M. Perrino, V. Cirello, L. Vicentini, S. Ferrero, L. Fugazzola, Segregation and expression analyses of hyaluronan-binding protein 2 (HABP2): insights from a large series of familial non-medullary thyroid cancers and literature review. Clin. Endocrinol. 86(6), 837–844 (2017). https://doi.org/10.1111/cen.13316

    Article  CAS  Google Scholar 

  18. S. Cantara, C. Marzocchi, M.G. Castagna, F. Pacini, HABP2 G534E variation in familial non-medullary thyroid cancer: an Italian series. J. Endocrinol. Invest. 40(5), 557–560 (2017). https://doi.org/10.1007/s40618-016-0583-9

    Article  CAS  PubMed  Google Scholar 

  19. A.L. Weeks, S.G. Wilson, L. Ward, J. Goldblatt, J. Hui, J.P. Walsh, HABP2 germline variants are uncommon in familial nonmedullary thyroid cancer. BMC Med. Genet. 17(1), 60 (2016). https://doi.org/10.1186/s12881-016-0323-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Ruiz-Ferrer, R.M. Fernandez, E. Navarro, G. Antinolo, S. Borrego, G534E variant in HABP2 and nonmedullary hyroid Cancer. Thyroid 26(7), 987–988 (2016). https://doi.org/10.1089/thy.2016.0193

    Article  PubMed  PubMed Central  Google Scholar 

  21. A.S. Alzahrani, A.K. Murugan, E. Qasem, H. Al-Hindi, HABP2 gene mutations do not cause familial or sporadic non-medullary thyroid cancer in a highly inbred middle eastern population. Thyroid 26(5), 667–671 (2016). https://doi.org/10.1089/thy.2015.0537

    Article  CAS  PubMed  Google Scholar 

  22. R. Sahasrabudhe, J. Stultz, J. Williamson, P. Lott, A. Estrada, M. Bohorquez, C. Palles, G. Polanco-Echeverry, E. Jaeger, L. Martin, M. Magdalena Echeverry, I. Tomlinson, L.G. Carvajal-Carmona, Tcukin: The HABP2 G534E variant is an unlikely cause of familial non-medullary thyroid cancer. J. Clin. Endocrinol. Metab. 10(3), 1098–1103 (2016). https://doi.org/10.1210/jc.2015-3928

    Article  CAS  PubMed  Google Scholar 

  23. Q. Zhang, F. Song, H. Zheng, X. Zhu, F. Song, X. Yao, L. Zhang, K. Chen, Association between single-nucleotide polymorphisms of BRAF and papillary thyroid carcinoma in a Chinese population. Thyroid 23(1), 38–44 (2013). https://doi.org/10.1089/thy.2012.0228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. X. Shen, G. Zhu, R. Liu, D. Viola, R. Elisei, E. Puxeddu, L. Fugazzola, C. Colombo, B. Jarzab, A. Czarniecka, A.K. Lam, C. Mian, F. Vianello, L. Yip, G. Riesco-Eizaguirre, P. Santisteban, C.J. O’Neill, M.S. Sywak, R. Clifton-Bligh, B. Bendlova, V. Sykorova, M. Xing, Patient age-associated mortality risk is differentiated by BRAF V600E status in papillary thyroid cancer. J. Clin. Oncol. JCO2017745497 (2017). https://doi.org/10.1200/JCO.2017.74.5497

  25. M. Xing, The T1799A BRAF mutation is not a germline mutation in familial nonmedullary thyroid cancer. Clin. Endocrinol. 63(3), 263–266 (2005). https://doi.org/10.1111/j.1365-2265.2005.02332.x

    Article  CAS  Google Scholar 

  26. H. Li, R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5), 589–595 (2010). https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M.A. DePristo, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20(9), 1297–1303 (2010). https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D.C. Koboldt, Q. Zhang, D.E. Larson, D. Shen, M.D. McLellan, L. Lin, C.A. Miller, E.R. Mardis, L. Ding, R.K. Wilson, VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22(3), 568–576 (2012). https://doi.org/10.1101/gr.129684.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. K. Wang, M. Li, H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38(16), e164 (2010). https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. I.A. Adzhubei, S. Schmidt, L. Peshkin, V.E. Ramensky, A. Gerasimova, P. Bork, A.S. Kondrashov, S.R. Sunyaev, A method and server for predicting damaging missense mutations. Nat. Methods 7(4), 248–249 (2010). https://doi.org/10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P.C. Ng, S. Henikoff, SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31(13), 3812–3814 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J.M. Schwarz, C. Rodelsperger, M. Schuelke, D. Seelow, MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7(8), 575–576 (2010). https://doi.org/10.1038/nmeth0810-575

    Article  CAS  PubMed  Google Scholar 

  33. S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M.A. Ferreira, D. Bender, J. Maller, P. Sklar, P.I. de Bakker, M.J. Daly, P.C. Sham, PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575 (2007). https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. E.Y. Zhou, Z. Lin, Y. Yang, HABP2 mutation and nonmedullary thyroid cancer. N. Engl. J. Med. 373(21), 2084–2085 (2015). https://doi.org/10.1056/NEJMc1511631#SA2

    Article  PubMed  Google Scholar 

  35. M. Levy, H. Shapiro, C.A. Thaiss, E. Elinav, NLRP6: a multifaceted innate immune sensor. Trends Immunol. 38(4), 248–260 (2017). https://doi.org/10.1016/j.it.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  36. S. Normand, A. Delanoye-Crespin, A. Bressenot, L. Huot, T. Grandjean, L. Peyrin-Biroulet, Y. Lemoine, D. Hot, M. Chamaillard, Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl Acad. Sci. USA 108(23), 9601–9606 (2011). https://doi.org/10.1073/pnas.1100981108

    Article  PubMed  PubMed Central  Google Scholar 

  37. H. Wang, G. Xu, Z. Huang, W. Li, H. Cai, Y. Zhang, D. Xiong, G. Liu, S. Wang, Z. Xue, Q. Luo, LRP6 targeting suppresses gastric tumorigenesis via P14(ARF)-Mdm2-P53-dependent cellular senescence. Oncotarget 8(67), 111597–111607 (2017). https://doi.org/10.18632/oncotarget.22876

    Article  PubMed  PubMed Central  Google Scholar 

  38. M. Ge, M. Shi, C. An, W. Yang, X. Nie, J. Zhang, Z. Lv, J. Li, L. Zhou, Z. Du, M. Yang, Functional evaluation of TERT-CLPTM1L genetic variants associated with susceptibility of papillary thyroid carcinoma. Sci. Rep. 6, 26037 (2016). https://doi.org/10.1038/srep26037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. T. Pang, M. Zhou, R. Liu, J. Luo, R. Xia, TERT rs2736098 (Ex2-659G>A) polymorphism and cancer susceptibility: evidence from a comprehensive meta-analysis. Oncotarget 8(56), 96433–96441 (2017). https://doi.org/10.18632/oncotarget.21703

    Article  PubMed  PubMed Central  Google Scholar 

  40. G. Atzmon, M. Cho, R.M. Cawthon, T. Budagov, M. Katz, X. Yang, G. Siegel, A. Bergman, D.M. Huffman, C.B. Schechter, W.E. Wright, J.W. Shay, N. Barzilai, D.R. Govindaraju, Y. Suh, Evolution in health and medicine Sackler colloquium: Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc. Natl Acad. Sci. USA 107(Suppl. 1), 1710–1717 (2010). https://doi.org/10.1073/pnas.0906191106

    Article  PubMed  Google Scholar 

  41. W. Pan, L. Zhou, M. Ge, B. Zhang, X. Yang, X. Xiong, G. Fu, J. Zhang, X. Nie, H. Li, X. Tang, J. Wei, M. Shao, J. Zheng, Q. Yuan, W. Tan, C. Wu, M. Yang, D. Lin, Whole exome sequencing identifies lncRNA GAS8-AS1 and LPAR4 as novel papillary thyroid carcinoma driver alternations. Hum. Mol. Genet. 25(9), 1875–1884 (2016). https://doi.org/10.1093/hmg/ddw056

    Article  CAS  PubMed  Google Scholar 

  42. Y. Qin, W. Sun, H. Zhang, P. Zhang, Z. Wang, W. Dong, L. He, T. Zhang, L. Shao, W. Zhang, C. Wu, LncRNA GAS8-AS1 inhibits cell proliferation through ATG5-mediated autophagy in papillary thyroid cancer. Endocrine 59(3), 555–564 (2018). https://doi.org/10.1007/s12020-017-1520-1

    Article  CAS  PubMed  Google Scholar 

  43. L. Ning, W. Rao, Y. Yu, X. Liu, Y. Pan, Y. Ma, R. Liu, S. Zhang, H. Sun, Q. Yu, Association between the KRAS gene polymorphisms and papillary thyroid carcinoma in a Chinese Han population. J. Cancer 7(15), 2420–2426 (2016). https://doi.org/10.7150/jca.16507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J.H. Lee, X.M. Zhao, I. Yoon, J.Y. Lee, N.H. Kwon, Y.Y. Wang, K.M. Lee, M.J. Lee, J. Kim, H.G. Moon, Y. In, J.K. Hao, K.M. Park, D.Y. Noh, W. Han, S. Kim, Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers. Cell Discov. 2, 16025 (2016). https://doi.org/10.1038/celldisc.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Genesky Bio-Tech Co., Ltd. for their help with gene sequencing and analysis.

Funding

This work was supported by Shanghai key discipline of medical imaging (no. 2017ZZ02005) and the National Natural Science Foundation of China (no. 81771865).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Kui Sun or Quan-Yong Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the ethics committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital.

Informed consent

Written informed consent was achieved from each subject (for subject whose age was younger than 18 years, written informed consent was obtained from his/her statutory guardian additionally).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, CT., Zhang, GQ., Qiu, ZL. et al. Targeted next-generation sequencing in papillary thyroid carcinoma patients looking for germline variants predisposing to the disease. Endocrine 64, 622–631 (2019). https://doi.org/10.1007/s12020-019-01878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01878-0

Keywords

Navigation