Skip to main content

Advertisement

Log in

High frequency deep transcranial magnetic stimulation acutely increases β-endorphins in obese humans

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

In obesity, metabolic and voluntary factors regulate appetite, and a dysregulation of the reward pathway was demonstrated in all addiction disorders. Deep transcranial magnetic stimulation (dTMS) is already used to modulate cerebral dopamine activation in neuro-psychiatric diseases. We presently assess the acute effect of high frequency (HF) and low frequency (LF) dTMS on the modulation of the main neuropeptides and neurotransmitters involved in the reward pathway in obese subjects.

Methods

This study was designed as a double-blind, sham-controlled, randomized clinical trial. Thirty-three obese patients (9 males, 24 females, age 48.1 ± 10.6, BMI 36.4 ± 4.7) were enrolled in the study. All patients were studied during a single dTMS session and blood aliquots were drawn before and after a single dTMS session. Metabolic and neuro-endocrine parameters were evaluated before and after: (1) 18 Hz dTMS (HF, 13 patients); (2) 1 Hz dTMS (LF, 10 patients); (3) Sham treatment (Sham, 10 patients).

Results

No statistically significant variations in metabolic parameters, systolic and diastolic blood pressure, and heart rate were shown acutely. HF showed a significant increase of β-endorphin compared to other groups (p = 0.048); a significant increase of ghrelin in LF (p = 0.041) was also demonstrated.

Conclusions

A single session of HF dTMS treatment determines in obese subjects an acute increase of β-endorphin level, indicating an activation of the reward pathway. The present findings constitute proof of principle for a potential application of this methodology in obesity treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T.A. Hare, C.F. Camerer, A. Rangel, Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324(5927), 646–648 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. M.E. Gluck, P. Viswanath, E.J. Stinson, Obesity, appetite, and the prefrontal cortex. Curr. Obes. Rep. 6(4), 380–388 (2017)

    Article  PubMed  Google Scholar 

  3. J. McClelland, N. Bozhilova, I. Campbell, U. Schmidt, A systematic review of the effects of neuromodulation on eating and body weight: evidence from human and animal studies. Eur. Eat. Disord. Rev. 21(6), 436–455 (2013)

    Article  PubMed  Google Scholar 

  4. D. Val-Laillet, E. Aarts, B. Weber, M. Ferrari, V. Quaresima, L.E. Stoeckel, M. Alonso-Alonso, M. Audette, C.H. Malbert, E. Stice, Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 8, 1–31 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N.D. Volkow, G.J. Wang, F. Telang, J.S. Fowler, P.K. Thanos, J. Logan, D. Alexoff, Y.S. Ding, C. Wong, Y. Ma, K. Pradhan, Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42(4), 1537–1543 (2008)

    Article  PubMed  Google Scholar 

  6. D.M. Small, R.J. Zatorre, A. Dagher, A.C. Evans, M. Jones-Gotman, Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124, 1720–1733 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. G.J. Wang, N.D. Volkow, J.S. Fowler, The role of dopamine in motivation for food in humans: implications for obesity. Expert. Opin. Ther. Targets 6(5), 601–609 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. J.H. Baik, Dopamine signaling in food addiction: role of dopamine D2 receptors. Bmb. Rep. 46(11), 519–526 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. E. Hadley, C. Haskell-Luevano, The Propiomelanocortin System. Ann. N. Y. Acad. Sci. 885, 1–21 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. B.C. Field, Neuroendocrinology of obesity. Br. Med. Bull. 109, 73–82 (2014)

    Article  PubMed  Google Scholar 

  11. M. Bose, B. Oliván, B. Laferrère, Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr. Opin. Endocrinol. Diabetes Obes. 16(5), 340–346 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. G.S. Pell, Y. Roth, A. Zangen, Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog. Neurobiol. 93(1), 59–98 (2011)

    Article  PubMed  Google Scholar 

  13. E.M. Wassermann, S.H. Lisanby, Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin. Neurophysiol. 112(8), 1367–1377 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. A. Zangen, Y. Roth, B. Voller, M. Hallett, Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clin. Neurophysiol. 116(4), 775–779 (2005)

    Article  PubMed  Google Scholar 

  15. M. Grall-Bronnec, A. Sauvaget, The use of repetitive transcranial magnetic stimulation for modulating craving and addictive behaviours: a critical literature review of efficacy, technical and methodological considerations. Neurosci. Biobehav. Rev. 47, 592–613 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. G. Addolorato, L. Leggio, F.W. Hopf, M. Diana, A. Bonci, Novel therapeutic strategies for alcohol and drug addiction: focus on GABA, ion channels and transcranial magnetic stimulation. Neuropsychopharmacology 37(1), 163–177 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. B.R. Mishra, S.H. Nizamie, B. Das, S.K. Praharaj, Efficacy of repetitive transcranial magnetic stimulation in alcohol dependence: a sham-controlled study. Addiction 105(1), 49–55 (2010)

    Article  PubMed  Google Scholar 

  18. G. Addolorato, M. Antonelli, F. Cocciolillo, G.A. Vassallo, C. Tarli, L. Sestito, A. Mirijello, A. Ferrulli, D.A. Pizzuto, G. Camardese, A. Miceli, M. Diana, A. Giordano, A. Gasbarrini, D. Di Giuda, Deep transcranial magnetic stimulation of the dorsolateral prefrontal cortex in alcohol use disorder patients: effects on dopamine transporter availability and alcohol intake. Eur. Neuropsychopharmacol. 27(5), 450–461 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. L. Dinur-Klein, P. Dannon, A. Hadar, O. Rosenberg, Y. Roth, M. Kotler, A. Zangen, Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: a prospective, randomized controlled trial. Biol. Psychiatry 76(9), 742–749 (2014)

    Article  PubMed  Google Scholar 

  20. A. Terraneo, L. Leggio, M. Saladini, M. Ermani, A. Bonci, L. Gallimberti, Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: a pilot study. Eur. Neuropsychopharmacol. 26(1), 37–44 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. M. Kanda, T. Mima, T. Oga, M. Matsuhashi, K. Toma, H. Hara, T. Satow, T. Nagamine, J.C. Rothwell, H. Shibasaki, Transcranial magnetic stimulation (TMS) of the sensorimotor cortex and medial frontal cortex modifies human pain perception. Clin. Neurophysiol. 114, 160–166 (2003)

    Article  Google Scholar 

  22. C. Rapinesi, A. Del Casale, P. Scatena, G.D. Kotzalidis, S. Di Pietro, V.R. Ferri, F.S. Bersani, R. Brugnoli, R.N. Raccah, A. Zangen, S. Ferracuti, F. Orzi, P. Girardi, G. Sette, Add-on deep Transcranial Magnetic Stimulation (dTMS) for the treatment of chronic migraine: a preliminary study. Neurosci. Lett. 623, 7–12 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. E. Yates, G. Balu, Deep Transcranial Magnetic Stimulation: A Promising Drug-Free Treatment Modality in the Treatment of Chronic Low Back Pain. Del. Med. J. 88(3), 90–92 (2016)

    PubMed  Google Scholar 

  24. M.B. First, R.L. Spitzer, M. Gibbon, J.B. Williams,: Structured clinical interview for DSM-IV-TR axis I disorders, research version, non-patient edition (SCID-I/NP). New York, New York, USA: Biometrics Research, New York State Psychiatric Institute (2002)

  25. K.C. Berridge, The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191(3), 391–431 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. A.P. Strafella, T. Paus, J. Barret, A. Dagher, Repetitive transcranical magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci. 21(15), RC157 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M.F. Maranhão, N.M. Estella, M.E. Cury, V.L. Amigo, C.M. Picasso, A. Berberian, I. Campbell, U. Schmidt, A.M. Claudino, The effects of repetitive transcranial magnetic stimulation in obese females with binge eating disorder: a protocol for a double-blinded, randomized, sham-controlled trial. BMC Psychiatry 15, 194 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. K. Fujioka, Sustained-release naltrexone/bupropion-a novel pharmacologic approach to obesity and food craving. US Endocrinol. 10, 53–58 (2014)

    Article  Google Scholar 

  29. C. Gianoulakis, Influence of the endogenous opioid system on high alcohol consumption and genetic predisposition to alcoholism. J. Psychiatry Neurosci. 26(4), 304–318 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. J.J. Tuulari, L. Tuominen, F.E. de Boer, J. Hirvonen, S. Helin, P. Nuutila, L. Nummenmaa, Feeding releases endogenous opioids in humans. J. Neurosci. 37(34), 8284–8291 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K. Blum, E.R. Braverman, J.M. Holder, J.F. Lubar, V.J. Monastra, D. Miller, J.O. Lubar, T.J. Chen, D.E. Comings, Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoact. Drugs 32(Suppl:i-iv), 1–112 (2000)

    Article  Google Scholar 

  32. M.A. Ahmed, S.A. Mohamed, D. Sayed, Long-term antalgic effects of repetitive transcranial magnetic stimulation of motor cortex and serum beta-endorphin in patients with phantom pain. Neurol. Res. 33(9), 953–958 (2011)

    Article  PubMed  Google Scholar 

  33. X. Li, R.J. Malcolm, K. Huebner, C.A. Hanlon, J.J. Taylor, K.T. Brady, M.S. George, R.E. See, Low frequency repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex transiently increases cue-induced craving for methamphetamine: a preliminary study. Drug Alcohol. Depend. 133(2), 641–646 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y. Dikshtein, R. Barnea, N. Kronfeld, E. Lax, I. Roth-Deri, A. Friedman, I. Gispan, E. Elharrar, S. Levy, M. Ben-Tzion, G. Yadid, β-endorphin via the Delta Opioid receptor is a major factor in the incubation of the cocaine cravings. Neuropsychopharmacology 38, 2508–2514 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. T. Ledoux, A.S. Nguyen, C. Bakos-Block, P. Bordnick, Using virtual reality to study food cravings. Appetite 71, 396–402 (2013)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Italian Ministry of Health (RF-2011–02349303).

Funding

Prof. Livio Luzi was a recipient of a grant from the Italian Ministry of Health (RF-2011–02349303).

Author information

Authors and Affiliations

Authors

Contributions

LL and IT contributed to designing the research study. LL, AF, and CM conducted experiments; specifically, LL provided research conduct oversight; AF contributed to performing dTMS after a specific training, and to providing medical oversight; CM contributed to collecting blood samples. AF and MA contributed to acquiring data; FA and VM performed statistical analysis. AF, LL, MA, FA and VM contributed to writing the manuscript. As corresponding author, LL confirms that he had full access to all the data in the study and has final responsibility for the decision to submit for publication.

Corresponding author

Correspondence to Livio Luzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrulli, A., Macrì, C., Terruzzi, I. et al. High frequency deep transcranial magnetic stimulation acutely increases β-endorphins in obese humans. Endocrine 64, 67–74 (2019). https://doi.org/10.1007/s12020-018-1791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1791-1

Keywords

Navigation