Skip to main content

Advertisement

Log in

The co-activator-associated arginine methyltransferase 1 (CARM1) gene is overexpressed in type 2 diabetes

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

We examined the expression of a panel of epigenetic enzymes catalyzing histone tails post-transcriptional modifications, together with effectors of metabolic and inflammatory alterations, in type 2 diabetes.

Methods

Cross-sectional, case–control study of 21 people with type 2 diabetes and 21 matched controls. Total RNA was extracted from white cells and reverse transcribed. PCR primer assays for 84 key genes encoding enzymes known to modify genomic DNA and histones were performed. Western blot was performed on lysates using primary antibodies for abnormally expressed enzymes. Hormones and cytokines were measured by multiplex kits. A Bayesian network was built to investigate the relationships between epigenetic, cytokine, and endocrine variables.

Results

Co-activator-associated aRginine Methyltransferase 1 (CARM1) expression showed a five-fold higher median value, matched by higher protein levels, among patients who also had increased GIP, IL-4, IL-7, IL-13, IL-17, FGF basic, G-CSF, IFN-γ, and TNFα and decreased IP-10. In a Bayesian network approach, CARM1 expression showed a conditional dependence on diabetes, but was independent of all other variables nor appeared to influence any.

Conclusions

Increased CARM1 expression in type 2 diabetes suggests that epigenetic mechanisms are altered in human diabetes. The impact of lifestyle and pharmacological treatment on regulation of this enzyme should be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CARM1:

Co-activator-associated aRginine Methyltransferase 1

FGF:

Fibroblast growth factor

G-CSF :

Granulocyte colony-stimulating factor

GIP:

Gastric inhibitory polypeptide or glucose-dependent insulinotropic peptide

GLP-1:

Glucagon-like peptide 1

IFN-γ:

Interferon gamma

IP-10:

Interferon-γ-inducible protein 10

IL-1ra:

Interleukin-1 receptor antagonist

IL-1β:

InterLeukin 1 beta

IL-4 :

InterLeukin 4

IL-5:

InterLeukin 5

IL-6 :

InterLeukin 6

IL-7 :

InterLeukin 7

IL-9:

InterLeukin 9

IL-10 :

InterLeukin 10

IL-12 :

InterLeukin 12

IL-13 :

InterLeukin 13

IL-17 :

InterLeukin 17

MCP-1 :

Monocyte chemoattractant protein-1

MIP-1a :

Macrophage inflammatory protein 1a

NFkB :

Nuclear factor kappa-light-chain-enhancer of activated B cells

PAI-1 :

Plasminogen activator inhibitor-1

PDGF:

Platelet-derived growth factor

TNF-α :

Tumor necrosis factor alpha

VEGF:

Vascular endothelial growth factor

References

  1. P.Z. Zimmet. Diabetes and its drivers: the largest epidemic in human history? Clin. Diabetes Endocrinol. (2017). https://doi.org/10.1186/s40842-016-0039-3

  2. G.A. Raciti, M. Longo, L. Parrillo, M. Ciccarelli, P. Mirra, P. Ungaro, P. Formisano, C. Miele, F. Béguinot. Understanding type 2 diabetes: from genetics to epigenetics. Acta Diabetol. (2015). https://doi.org/10.1007/s00592-015-0741-0

  3. P.D. Gluckman. Epigenetics and metabolism in 2011: epigenetics, the life-course and metabolic disease. Nat. Rev. Endocrinol. (2011). https://doi.org/10.1038/nrendo.2011.226

  4. K.M. Godfrey, A. Sheppard, P.D. Gluckman, K.A. Lillycrop, G.C. Burdge, C. McLean, J. Rodford, J.L. Slater-Jefferies, E. Garratt, S.R. Crozier, B.S. Emerald, C.R. Gale, H.M. Inskip, C. Cooper, M.A. Hanson. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes (2011). https://doi.org/10.2337/db10-0979

  5. M. Trento, P. Passera, E. Borgo, M. Tomalino, M. Bajardi, F. Cavallo, M. Porta, A 5-year randomized controlled study of learning, problem solving ability and quality of life modifications in people with type 2 diabetes managed by group care. Diabetes Care 27, 670–675 (2004)

    Article  PubMed  Google Scholar 

  6. M. Trento, S. Gamba, L. Gentile, G. Grassi, V. Miselli, G. Morone, P. Passera, L. Tonutti, M. Tomalino, P. Bondonio, F. Cavallo, M. Porta; for the ROMEO investigators, Rethink organization to improve education and outcomes (ROMEO). A multicentre randomised trial of lifestyle intervention by group care to manage type 2 diabetes. Diabetes Care 33, 745–747 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  7. M. Raballo, M. Trevisan, A.F. Trinetta, L. Charrier, F. Cavallo, M. Porta, M. Trento, A study of patients’ perceptions of diabetes care delivery and diabetes: propositional analysis in people with type 1 and 2 diabetes managed by group or usual care. Diabetes Care 35, 242–247 (2011)

    Article  PubMed  Google Scholar 

  8. W.T. Friedewald, R.I. Levy, D.S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972)

    CAS  PubMed  Google Scholar 

  9. D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985)

    Article  CAS  Google Scholar 

  10. J.A. Whelan, N.B. Russell, M.A. Whelan, A method for the absolute quantification of cDNA using real time PCR. J. Immunol. Methods 278, 261–269 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. M. Ciccarelli, V. Vastolo, L. Albano, M. Lecce, S. Cabaro, A. Liotti, M. Longo, F. Oriente, G.L. Russo, P.E. Macchia, P. Formisano, F. Beguinot, P. Ungaro. Glucose-induced expression of the homeotic transcription factor Prep1 is associated with histone post-transational modifications in skeletal muscle. Diabetologia (2016). https://doi.org/10.1007/s00125-015-3774-6

  12. U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  CAS  PubMed  Google Scholar 

  13. H. Wang, D. Dash, M.J. Druzdzel. A method for evaluating elicitation schemes for probabilistic models. IEEE Trans. Syst. Man Cybern. B Cybern. (2002). https://doi.org/10.1109/3477.979958

  14. S.L. Lauritzen, The EM algorithm for graphical association models with missing data. Comput. Stat. Data Anal. 19, 191–201 (1995)

    Article  Google Scholar 

  15. A.M. Vaiserman. Early-life nutritional programming of type 2 diabetes: experimental and quasi-experimental evidence. Nutrients (2017). https://doi.org/10.3390/nu9030236

  16. S.L. Jacques, K.P. Aquino, J. Gureasko, P.A. Boriack-Sjodin, M. Porter Scott, R.A. Copeland, T.V. Riera. CARM1 preferentially methylates H3R17 over H3R26 through a random kinetic mechanism. Biochemistry (2016). https://doi.org/10.1021/acs.biochem.5b01071

  17. F. Miao, S. Li, V. Chavez, L. Lanting, R. Natarajan, Coactivator-associated arginine methyltransferase-1 enhances nuclear factor-kappaB-mediated gene transcription through methylation of histone H3 at arginine 17. Mol. Endocrinol. 20, 1562–1573 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. J.K. Kim, Y. Lim, J.O. Lee, Y.S. Lee, N.H. Won, H. Kim, H.S. Kim. PRMT4 is involved in insulin secretion via the methylation of histone H3 in pancreatic β cells. J. Mol. Endocrinol. (2015). https://doi.org/10.1530/JME-14-0325

  19. A. Krones-Herzig, A. Mesaros, D. Metzger, A. Ziegler, U. Lemke, J.C. Brüning, S. Herzig, Signal-dependent control of gluconeogenic key enzyme genes through coactivator-associated arginine methyltransferase 1. J. Biol. Chem. 281, 3025–3029 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. D.I. Kim, M.J. Park, S.K. Lim, J.H. Choi, J.C. Kim, H.J. Han, T.K. Kundu, J.I. Park, K.C. Yoon, S.W. Park, J.S. Park, Y.R. Heo, S.H. Park. High-glucose-induced CARM1 expression regulates apoptosis of human retinal pigment epithelial cells via histone 3 arginine 17 dimethylation: role in diabetic retinopathy. Arch. Biochem. Biophys. (2014). https://doi.org/10.1016/j.abb.2014.07.021

  21. D.I. Kim, M.J. Park, J.H. Choi, I.S. Kim, H.J. Han, K.C. Yoon, S.W. Park, M.Y. Lee, K.S. Oh, S.H. Park. PRMT1 and PRMT4 regulate oxidative stress-induced retinal pigment epithelial cell damage in SIRT1-dependent and SIRT1-independent manners. Oxid. Med. Cell Longev. (2015). https://doi.org/10.1155/2015/617919

  22. D. Kim, S. Lim, M. Park, J. Choi, J. Kim, H. Han, K. Yoon, K. Kim, J. Lim, S. Park. Ubiquitination-dependent CARM1 degradation facilitates Notch1-mediated podocyte apoptosis in diabetic nephropathy. Cell Signal. (2014). https://doi.org/10.1016/j.cellsig.2014.04.008

  23. H.J. Shin, H. Kim, S. Oh, J.G. Lee, M. Kee, H.J. Ko, M.N. Kweon, K.J. Won, S.H. Baek. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature (2016). https://doi.org/10.1038/nature18014

  24. S.C. Wang, D.H. Dowhan, N.A. Eriksson, G.E. Muscat. CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells. Biochem. J. (2012). https://doi.org/10.1042/BJ20112033

  25. P. Yu, L. Ji, K.J. Lee, M. Yu, C. He, S. Ambati, E.C. McKinney, C. Jackson, C.A. Baile, R.J. Schmitz, R.B. Meagher. Subsets of visceral adipose tissue nuclei with distinct levels of 5-hydroxymethylcytosine. PLoS ONE (2016). https://doi.org/10.1371/journal.pone.0154949

  26. C.G. Yeom, D.I. Kim, M.J. Park, J.H. Choi, J. Jeong, A. Wi, W. Park, H.J. Han, S.H. Park. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. Biochem. Biophys. Res. Commun. (2015). https://doi.org/10.1016/j.bbrc.2015.04.099

  27. F. Marino, G.P. Mommen, A. Jeko, H.D. Meiring, J.A. van Gaans-van den Brink, R.A. Scheltema, C.A. van Els, A.J. Heck. Arginine (di)methylated human leukocyte antigen class I peptides are favorably presented by HLA-B*07. J. Proteome. Res. (2017). https://doi.org/10.1021/acs.jproteome.6b00528

  28. M.K.1 Mulligan, I. Ponomarev, R.J. Hitzemann, J.K. Belknap, B. Tabakoff, R.A. Harris, J.C. Crabbe, Y.A. Blednov, N.J. Grahame, T.J. Phillips, D.A. Finn, P.L. Hoffman, V.R. Iyer, G.F. Koob, S.E. Bergeson, Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc. Natl Acad. Sci. USA 103, 6368–6373 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. Y. Wei, K. Chen, A.T. Whaley-Connell, C.S. Stump, J.A. Ibdah, J.R. Sowers, Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R673–R680 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. M. Chehtane, A.R. Khaled. Interleukin-7 mediates glucose utilization in lymphocytes through transcriptional regulation of the hexokinase II gene. Am. J. Physiol. Cell Physiol. (2010). https://doi.org/10.1152/ajpcell.00506.2009

  31. J.L. Reverter, J. Nadal, J. Ballester, L. Ramió-Lluch, M.M. Rivera, J.M. Fernández-Novell, J. Elizalde, S. Abengoechea, J.E. Rodriguez. Diabetic retinopathy is associated with decreased tyrosine nitrosylation of vitreous interleukins IL-1α, IL-1β, and IL-7. Ophthalmic Res. (2011). https://doi.org/10.1159/000323812

  32. R. Vasko, M. Koziolek, M. Ikehata, M.P. Rastaldi, K. Jung, H. Schmid, M. Kretzler, G.A. Müller, F. Strutz. Role of basic fibroblast growth factor (FGF-2) in diabetic nephropathy and mechanisms of its induction by hyperglycemia in human renal fibroblasts. Am. J. Physiol. Renal. Physiol. (2009). https://doi.org/10.1152/ajprenal.90352.2008

  33. F.A. Alrouq, A.A. Al-Masri, L.M. Al-Dokhi, K.A. Alregaiey, N.M. Bayoumy, F.A. Zakareia. Study of the association of adrenomedullin and basic-fibroblast growth factors with the peripheral arterial blood flow and endothelial dysfunction biomarkers in type 2 diabetic patients with peripheral vascular insufficiency. J. Biomed. Sci. (2014). https://doi.org/10.1186/s12929-014-0094-y

  34. M. Cieślak, A. Wojtczak, M. Cieślak, Role of pro-inflammatory cytokines of pancreatic islets and prospects of elaboration of new methods for the diabetes treatment. Acta Biochim. Pol. 62, 15–21 (2015)

    Article  PubMed  Google Scholar 

  35. A.K. Marwaha, S. Tan, J.P. Dutz. Targeting the IL-17/IFN-γ axis as a potential new clinical therapy for type 1 diabetes. Clin. Immunol. (2014). https://doi.org/10.1016/j.clim.2014.06.006

  36. L.M. Wang, A. Keegan, M. Frankel, W.E. Paul, J.H. Pierce, Signal transduction through the IL-4 and insulin receptor families. Stem Cells 13, 360–368 (1995)

    Article  CAS  PubMed  Google Scholar 

  37. A.N. Malik, C.K. Parsade, S. Ajaz, R. Crosby-Nwaobi, L. Gnudi, A. Czajka, S. Sivaprasad. Altered circulating mitochondrial DNA and increased inflammation in patients with diabetic retinopathy. Diabetes Res. Clin. Pract. (2015). https://doi.org/10.1016/j.diabres.2015.10.006

  38. A. Brahimaj, S. Ligthart, M. Ghanbari, M.A. Ikram, A. Hofman, O.H. Franco, M. Kavousi, A. Dehghan. Novel inflammatory markers for incident pre-diabetes and type 2 diabetes: the Rotterdam Study. Eur. J. Epidemiol. (2017). https://doi.org/10.1007/s10654-017-0236-0

  39. A. Roohi, M. Tabrizi, F. Abbasi, A. Ataie-Jafari, B. Nikbin, B. Larijani, M. Qorbani, A. Meysamie, H. Asgarian-Omran, B. Nikmanesh, A. Bajouri, N. Shafiey, A. Maleki. Serum IL-17, IL-23, and TGF-beta levels in type 1 and type 2 diabetic patients and age matched healthy controls. Biomed. Res. Int. (2014). https://doi.org/10.1155/2014/718946

  40. M. Sumarac-Dumanovic, D. Jeremic, A. Pantovic, K. Janjetovic, D. Stamenkovic-Pejkovic, G. Cvijovic, D. Stevanovic, D. Micic, V. Trajkovic. Therapeutic improvement of glucoregulation in newly diagnosed type 2 diabetes patients is associated with a reduction of IL-17 levels. Immunobiology (2013). https://doi.org/10.1016/j.imbio.2013.03.002

  41. A. Nadeem, K. Javaid, W. Sami, A. Zafar, S. Jahan, S. Zaman, A. Nagi, Inverse relationship of serum IL-17 with type-II diabetes retinopathy. Clin. Lab. 59, 1311–1317 (2013)

    PubMed  Google Scholar 

  42. I. Ruffilli, S.M. Ferrari, M. Colaci, C. Ferri, P. Fallahi, A. Antonelli. IP-10 in autoimmune thyroiditis. Horm. Metab. Res. (2014). https://doi.org/10.1055/s-0034-1382053

  43. P. van den Borne, P.H. Quax, I.E. Hoefer, G. Pasterkamp. The multifaceted functions of CXCL10 in cardiovascular disease. Biomed. Res. Int. (2014). https://doi.org/10.1155/2014/893106

  44. J. Miyagawa, M. Miuchi, M. Namba, Incretin-based therapy in patients with type 1 diabetes mellitus. Nihon Rinsho 69, 923–929 (2011)

    PubMed  Google Scholar 

Download references

Funding

This work was supported by Progetto Finalizzato RF 2010 230456 from the Italian Ministry of Health, and Departmental funds (Fondi ex-60%-2015) from the Department of Medical Sciences at Turin University.

Author contributions

M.P. and M.T. conceived the study, researched data, and drafted the manuscript. C.A., F.B., P.F., S.M., L.A., M.C., and P.U. participated in data acquisition. F.B., P.B., and F.C. contributed to analysis and interpretation of data and reviewed/edited the manuscript. G.G. and M.D. contributed to the discussion and reviewed/edited the manuscript. All authors gave their final approval to this version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Porta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent to inclusion in the study was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porta, M., Amione, C., Barutta, F. et al. The co-activator-associated arginine methyltransferase 1 (CARM1) gene is overexpressed in type 2 diabetes. Endocrine 63, 284–292 (2019). https://doi.org/10.1007/s12020-018-1740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1740-z

Keywords

Navigation