Skip to main content

Advertisement

Log in

Cause-specific risk of major adverse cardiovascular outcomes and hypoglycemic in patients with type 2 diabetes: a multicenter prospective cohort study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Glycated hemoglobin A1c (HbA1c) and fasting plasma glucose (FPG) was identified to account for the risk of cardiovascular diseases in type 2 diabetic patients, but no study evaluated the risk based on both HbA1c and FPG levels. We described the risk of major adverse cardiovascular events (MACE) and hypoglycemic in type 2 diabetic patients according to both HbA1c and FPG levels.

Methods

With the usage of databases of Action in Diabetes and Vascular disease: preterAx and diamicroN-MR Controlled Evaluation (ADVANCE), 1815 patients from 61 centers in China was identified and grouped according to the criterion value of HbA1c and FPG: Good glycemic control (HbA1c < 6.5%, FPG < 6.1 mmol/L); Insufficient glycemic control (HbA1c < 6.5%, FPG ≥ 6.1 mmol/L or HbA1c ≥ 6.5%, FPG < 6.1 mmol/L); Poor glycemic control (HbA1c ≥ 6.5%, FPG ≥ 6.1 mmol/L). Time-varying multivariable Cox proportional hazards models were employed.

Results

Average age was 64.8 ± 5.8 years, with a median of 4.8 years of follow-up. Overall, the incidence rates of MACE were 20.6 per 1000-person-years in Good glycemic control compared with 45.9 per 1000-person-years in Insufficient glycemic control (adjusted hazard ratio (aHR): 1.99; 95% CI 1.11–3.56; p = 0.02) and 54.7 per 1000-person-years in Poor glycemic control (aHR: 2.46; 95% CI 1.38–4.40; p = 0.002), respectively. The risk of hypoglycemic was highest in Insufficient glycemic control; 67.3 per 1000-person-years compared with 46.3 per 1000-person-years in Good glycemic control (aHR: 1.62; 95% CI 1.03–2.56; p = 0.04). Apart from this, we also observed that both MACE (aHR:1.41; 95% CI 1.13–1.77; p = 0.003) and hypoglycemic episodes (aHR: 1.82; 95% CI 1.48–2.24; p < 0.001) were sufficiently more frequent in the insulin-exposed group than the non-exposed group. In a post-hoc analysis, the risk of MACE (aHR:1.43; 95% CI 1.09–1.86; p = 0.01) and hypoglycemic (aHR: 1.99; 95% CI 1.46–2.69; p < 0.001) were more pronounced in Insufficient glycemic control with insulin exposure.

Conclusions

We observed a significant association of cause-specific risk of MACE and hypoglycemic with Insufficient glycemic control, particularly with insulin exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HbA1c :

Glycated hemoglobin A1c

FPG:

fasting plasma glucose

MACE:

major adverse cardiovascular events

ADVANCE:

Action in Diabetes and Vascular disease: preterAx and diamicroN-MR Controlled Evaluation

aHR:

adjusted hazard ratio

IQR:

Interquartile range

BMI:

body mass index

ACCORD:

Action to Control Cardiovascular Risk in Diabetes

VADT:

Veterans Affairs Diabetes Trail.

References

  1. International Diabetes Federation. IDF Diabetes Atlas, 8 edn. http://www.diabetesatlas.org (2017). Accessed 2017.

  2. L. Wang, P. Gao, M. Zhang, Z. Huang, D. Zhang, Q. Deng, Y. Li, Z. Zhao, X. Qin, D. Jin, M. Zhou, X. Tang, Y. Hu, L. Wang, Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 317(24), 2515–2523 (2017). https://doi.org/10.1001/jama.2017.7596

    Article  PubMed  PubMed Central  Google Scholar 

  3. S.M. Haffner, S. Lehto, T. Ronnemaa, K. Pyorala, M. Laakso, Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Eng. J. Med. 339(4), 229–234 (1998). https://doi.org/10.1056/nejm199807233390404

    Article  CAS  Google Scholar 

  4. S.H. Saydah, M. Miret, J. Sung, C. Varas, D. Gause, F.L. Brancati, Postchallenge hyperglycemia and mortality in a national sample of U.S. adults. Diabetes Care 24(8), 1397–1402 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)., UK Prospective Diabetes Study (UKPDS) Group. Lancet (Lond., Engl.) 352(9131), 837–853 (1998)

    Article  PubMed  Google Scholar 

  6. D.M. Nathan, S. Genuth, J. Lachin, P. Cleary, O. Crofford, M. Davis, L. Rand, C. Siebert, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Eng. J. Med. 329(14), 977–986 (1993). https://doi.org/10.1056/nejm199309303291401

    Article  CAS  Google Scholar 

  7. M. Shichiri, H. Kishikawa, Y. Ohkubo, N. Wake, Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 23(suppl 2), B21–B29 (2000)

    PubMed  Google Scholar 

  8. C. Abraira, J. Colwell, F. Nuttall, C.T. Sawin, W. Henderson, J.P. Comstock, N.V. Emanuele, S.R. Levin, I. Pacold, H.S. Lee, Cardiovascular events and correlates in the Veterans Affairs Diabetes Feasibility Trial. Veterans Affairs Cooperative Study on Glycemic Control and Complications in Type II Diabetes. Arch. Intern. Med. 157(2), 181–188 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. C. Stettler, S. Allemann, P. Juni, C.A. Cull, R.R. Holman, M. Egger, S. Krahenbuhl, P. Diem, Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: Meta-analysis of randomized trials. Am. Heart J. 152(1), 27–38 (2006). https://doi.org/10.1016/j.ahj.2005.09.015

    Article  CAS  PubMed  Google Scholar 

  10. C.J. Currie, J.R. Peters, A. Tynan, M. Evans, R.J. Heine, O.L. Bracco, T. Zagar, C.D. Poole, Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet (Lond., Engl.) 375(9713), 481–489 (2010). https://doi.org/10.1016/s0140-6736(09)61969-3

    Article  CAS  Google Scholar 

  11. B. Balkau, M. Shipley, R.J. Jarrett, K. Pyorala, M. Pyorala, A. Forhan, E. Eschwege, High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men. 20-year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care 21(3), 360–367 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. M. Coutinho, H.C. Gerstein, Y. Wang, S. Yusuf, The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 22(2), 233–240 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. D.E. Goldstein, R.R. Little, R.A. Lorenz, J.I. Malone, D.M. Nathan, C.M. Peterson, Tests of glycemia in diabetes. Diabetes Care 26(Suppl 1), S106–S108 (2003)

    PubMed  Google Scholar 

  14. E. Selvin, M.W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, F.L. Brancati, Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Eng. J. Med. 362(9), 800–811 (2010). https://doi.org/10.1056/NEJMoa0908359

    Article  CAS  Google Scholar 

  15. E. Selvin, S. Marinopoulos, G. Berkenblit, T. Rami, F.L. Brancati, N.R. Powe, S.H. Golden, Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann. Intern. Med. 141(6), 421–431 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. S.E. Moss, R. Klein, B.E. Klein, S.M. Meuer, The association of glycemia and cause-specific mortality in a diabetic population. Arch. Intern. Med. 154(21), 2473–2479 (1994)

    Article  CAS  PubMed  Google Scholar 

  17. X. Guan, L. Zheng, G. Sun, X. Guo, Y. Li, H. Song, F. Tian, Y. Sun, The changing relationship between HbA1c and FPG according to different FPG ranges. J. Endocrinol. Invest. 39(5), 523–528 (2016). https://doi.org/10.1007/s40618-015-0389-1

    Article  CAS  PubMed  Google Scholar 

  18. A. Patel, S. MacMahon, J. Chalmers, B. Neal, L. Billot, M. Woodward, M. Marre, M. Cooper, P. Glasziou, D. Grobbee, P. Hamet, S. Harrap, S. Heller, L. Liu, G. Mancia, C.E. Mogensen, C. Pan, N. Poulter, A. Rodgers, B. Williams, S. Bompoint, B.E. de Galan, R. Joshi, F. Travert, Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Eng. J. Med. 358(24), 2560–2572 (2008). https://doi.org/10.1056/NEJMoa0802987

    Article  CAS  Google Scholar 

  19. S. Zoungas, J. Chalmers, B. Neal, L. Billot, Q. Li, Y. Hirakawa, H. Arima, H. Monaghan, R. Joshi, S. Colagiuri, M.E. Cooper, P. Glasziou, D. Grobbee, P. Hamet, S. Harrap, S. Heller, L. Lisheng, G. Mancia, M. Marre, D.R. Matthews, C.E. Mogensen, V. Perkovic, N. Poulter, A. Rodgers, B. Williams, S. MacMahon, A. Patel, M. Woodward, Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N. Eng. J. Med. 371(15), 1392–1406 (2014). https://doi.org/10.1056/NEJMoa1407963

    Article  CAS  Google Scholar 

  20. Rationale and design of the ADVANCE study: a randomised trial of blood pressure lowering and intensive glucose control in high-risk individuals with type 2 diabetes mellitus., Action in diabetes and vascular disease: PreterAx and diamicron modified-release controlled evaluation. J. Hypertens. Suppl.: Off. J. Int. Soc. Hypertens. 19(4), S21–S28 (2001)

    Google Scholar 

  21. ADVANCE Management Committee. Study rationale and design of ADVANCE: action in diabetes and vascular disease--preterax and diamicron MR controlled evaluation. Diabetologia 44(9), 1118–1120 (2001).

  22. F. He, M. Liu, Z. Chen, G. Liu, Z. Wang, R. Liu, J. Luo, J. Tang, X. Wang, X. Liu, H. Zhou, X. Chen, Z. Liu, W. Zhang, Assessment of Human Tribbles Homolog 3 Genetic Variation (rs2295490) Effects on Type 2 Diabetes Patients with Glucose Control and Blood Pressure Lowering Treatment. EBioMedicine 13, 181–189 (2016). https://doi.org/10.1016/j.ebiom.2016.10.025

    Article  PubMed  PubMed Central  Google Scholar 

  23. I.M. Stratton, A.I. Adler, H.A.Neil, D.R. Matthews, S.E. Manley, C.A. Cull, D. Hadden, R.C. Turner, R.R. Holman, Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ (Clinical research ed.) 321(7258), 405–412 (2000)

  24. M.S. Kirkman, M. McCarren, J. Shah, W. Duckworth, C. Abraira, The association between metabolic control and prevalent macrovascular disease in Type 2 diabetes: the VA Cooperative Study in diabetes. J. Diabetes Complicat. 20(2), 75–80 (2006). https://doi.org/10.1016/j.jdiacomp.2005.06.013

    Article  Google Scholar 

  25. H.C. Gerstein, M.E. Miller, R.P. Byington, D.C. Goff Jr., J.T. Bigger, J.B. Buse, W.C. Cushman, S. Genuth, F. Ismail-Beigi, R.H. Grimm Jr., J.L. Probstfield, D.G. Simons-Morton, W.T. Friedewald, Effects of intensive glucose lowering in type 2 diabetes. N. Eng. J. Med. 358(24), 2545–2559 (2008). https://doi.org/10.1056/NEJMoa0802743

    Article  CAS  Google Scholar 

  26. C. Abraira, W. Duckworth, M. McCarren, N. Emanuele, D. Arca, D. Reda, W. Henderson, Design of the cooperative study on glycemic control and complications in diabetes mellitus type 2: Veterans Affairs Diabetes Trial. J. Diabetes Complicat. 17(6), 314–322 (2003)

    Article  Google Scholar 

  27. P.E. Cryer, Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes 63(7), 2188–2195 (2014). https://doi.org/10.2337/db14-0059

    Article  PubMed  Google Scholar 

  28. S.E. Inzucchi, R.M. Bergenstal, J.B. Buse, M. Diamant, E. Ferrannini, M. Nauck, A.L. Peters, A. Tsapas, R. Wender, D.R. Matthews, Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38(1), 140–149 (2015). https://doi.org/10.2337/dc14-2441

    Article  PubMed  Google Scholar 

  29. K.J. Lipska, H. Krumholz, T. Soones, S.J. Lee, Polypharmacy in the aging patient: A review of glycemic control in older adults with type 2 diabetes. JAMA 315(10), 1034–1045 (2016). https://doi.org/10.1001/jama.2016.0299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M.K. Rutter, Devoting attention to glucose variability and hypoglycaemia in type 2 diabetes. Diabetologia 61(1), 43–47 (2018). https://doi.org/10.1007/s00125-017-4421-1

    Article  CAS  PubMed  Google Scholar 

  31. B. Zinman, S.P. Marso, N.R. Poulter, S.S. Emerson, T.R. Pieber, R.E. Pratley, M. Lange, K. Brown-Frandsen, A. Moses, A.M. Ocampo Francisco, J. Barner Lekdorf, K. Kvist, J.B. Buse, Day-to-day fasting glycaemic variability in DEVOTE: associations with severe hypoglycaemia and cardiovascular outcomes (DEVOTE 2). Diabetologia 61(1), 48–57 (2018). https://doi.org/10.1007/s00125-017-4423-z

    Article  PubMed  Google Scholar 

  32. C.R.L. Cardoso, N.C. Leite, C.B.M. Moram, G.F. Salles, Long-term visit-to-visit glycemic variability as predictor of micro- and macrovascular complications in patients with type 2 diabetes: The Rio de Janeiro Type 2. Diabetes Cohort Study 17(1), 33 (2018). https://doi.org/10.1186/s12933-018-0677-0

    Article  CAS  Google Scholar 

  33. H.C. Gerstein, M.E. Miller, F. Ismail-Beigi, J. Largay, C. McDonald, H.A. Lochnan, G.L. Booth, Effects of intensive glycaemic control on ischaemic heart disease: analysis of data from the randomised, controlled ACCORD trial. Lancet 384(9958), 1936–1941 (2014). https://doi.org/10.1016/S0140-6736(14)60611-5

    Article  PubMed  PubMed Central  Google Scholar 

  34. B. Zinman, C. Wanner, J.M. Lachin, D. Fitchett, E. Bluhmki, S. Hantel, M. Mattheus, T. Devins, O.E. Johansen, H.J. Woerle, U.C. Broedl, S.E. Inzucchi, Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Eng. J. Med. 373(22), 2117–2128 (2015). https://doi.org/10.1056/NEJMoa1504720

    Article  CAS  Google Scholar 

  35. S.P. Marso, S.C. Bain, A. Consoli, F.G. Eliaschewitz, E. Jódar, L.A. Leiter, I. Lingvay, J. Rosenstock, J. Seufert, M.L. Warren, V. Woo, O. Hansen, A.G. Holst, J. Pettersson, T. Vilsbøll, Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Eng. J. Med. 375(19), 1834–1844 (2016). https://doi.org/10.1056/NEJMoa1607141

    Article  CAS  Google Scholar 

  36. S.P. Marso, G.H. Daniels, K. Brown-Frandsen, P. Kristensen, J.F. Mann, M.A. Nauck, S.E. Nissen, S. Pocock, N.R. Poulter, L.S. Ravn, W.M. Steinberg, M. Stockner, B. Zinman, R.M. Bergenstal, J.B. Buse, Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Eng. J. Med. 375(4), 311–322 (2016). https://doi.org/10.1056/NEJMoa1603827

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of ADVANCE group at 61 centers in China. We also thank all patients and participants who have contributed to the register.

Funding

This work was funded by grants from National Key Research and Development Program (No. 2016YFC0905000), National Natural Science Foundation of China (No 81522048, 81573511) and the Innovation Driven Project of Central South University (No 2016CX024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The study was approved by the local ethics committee and was in accordance with the 1964 Helsinki declaration and its later amendments.

Informed consent

All patients provide written informed consent.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., He, F., Sun, L. et al. Cause-specific risk of major adverse cardiovascular outcomes and hypoglycemic in patients with type 2 diabetes: a multicenter prospective cohort study. Endocrine 63, 44–51 (2019). https://doi.org/10.1007/s12020-018-1715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1715-0

Keywords

Navigation