Advertisement

Endocrine

, Volume 62, Issue 1, pp 195–206 | Cite as

Downregulation of leptin receptor and kisspeptin/GPR54 in the murine hypothalamus contributes to male hypogonadism caused by high-fat diet-induced obesity

  • Lingling Zhai
  • Jian Zhao
  • Yiming Zhu
  • Qiannan Liu
  • Wenhua Niu
  • Chengyin Liu
  • Yi Wang
Original Article
  • 201 Downloads

Abstract

Purpose

Obesity may lead to male hypogonadism, the underlying mechanism of which remains unclear. In the present study, we established a murine model of male hypogonadism caused by high-fat diet-induced obesity to verify the following hypotheses: 1) an increased leptin level may be related to decreased secretion of GnRH in obese males, and 2) repression of kisspeptin/GPR54 in the hypothalamus, which is associated with increased leptin levels, may account for the decreased secretion of GnRH and be involved in secondary hypogonadism (SH) in obese males.

Methods

Male mice were fed high-fat diet for 19 weeks and divided by body weight gain into diet-induced obesity (DIO) and diet-induced obesity resistant (DIO-R) group. The effect of obesity on the reproductive organs in male mice was observed by measuring sperm count and spermatozoid motility, relative to testis and epididymis weight, testosterone levels, and pathologic changes. Leptin, testosterone, estrogen, and LH in serum were detected by ELISA method. Leptin receptor (Ob-R), Kiss1, GPR54, and GnRH mRNA were measured by real-time PCR in the hypothalamus. Expression of kisspeptin and Ob-R protein was determined by Western blotting. Expression of GnRH and GPR54 protein was determined by immunohistochemical analysis.

Results

We found that diet-induced obesity decreased spermatozoid motility, testis and epididymis relative coefficients, and plasma testosterone and luteinizing hormone levels. An increased number and volume of lipid droplets in Leydig cells were observed in the DIO group compared to the control group. Significantly, higher serum leptin levels were found in the DIO and DIO-R groups. The DIO and DIO-R groups showed significant downregulation of the GnRH, Kiss1, GPR54, and Ob-R genes. We also found decreased levels of GnRH, kisspeptin, GPR54, and Ob-R protein in the DIO and DIO-R groups.

Conclusions

These lines of evidence suggest that downregulation of Ob-R and kisspeptin/GPR54 in the murine hypothalamus may contribute to male hypogonadism caused by high-fat diet-induced obesity.

Keywords

High-fat diet Obesity Male hypogonadism Leptin resistance 

Notes

Funding

This work was funded by the National Natural Science Foundation of China (grant no: 81671515, 30800920), the Foundation of Liaoning Provincial Department of Education (grant no: LK201624), and the Natural Science Foundation of Liaoning province (grant no: 201602710).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were approved by the Animal Ethics and Caring Committee of China Medical University. All experimental procedures were conducted in accordance with the Institutional Guidelines for the Care and Use of Laboratory Animals of China Medical University and the National Institutes of Health Guide for Care and Use of Laboratory Animals (publication no. 85-23, revised 1985).

Supplementary material

12020_2018_1646_MOESM1_ESM.docx (34 kb)
Supplementary Figure

References

  1. 1.
    M. Ng, T. Fleming, M. Robinson, B. Thomson, N. Graetz, C. Margono et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–81 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    J.Y. Hwang, H.J. Lee, M.J. Go, H.B. Jang, S.I. Park, B.J. Kim, H.J. Lee, An integrative study identifies KCNC2 as a novel predisposing factor for childhood obesity and the risk of diabetes in the Korean population. Sci. Rep. 6, 33043 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    M. Horikoshi, R.N. Beaumont, F.R. Day, N.M. Warrington, M.N. Kooijman, J. Fernandez-Tajes et al. Genome-wide associations for birth weight and correlations with adult disease. Nature 538, 248–52 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    D.M. Allcock, M.J. Gardner, J.R. Sowers, Relation between childhood obesity and adult cardiovascular risk. Int J. Pediatr. Endocrinol. 2009, 10887 (2009)CrossRefGoogle Scholar
  5. 5.
    L.J. Lloyd, S.C. Langley-Evans, S. McMullen, Childhood obesity and risk of the adult metabolic syndrome: a systematic review. Int J. Obes. (Lond.) 36, 1–11 (2012)CrossRefGoogle Scholar
  6. 6.
    J.L. Baker, L.W. Olsen, T.I. Sørensen, Childhood body-mass index and the risk of coronary heart disease in adulthood. N. Engl. J. Med 357, 2329–37 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    S. Cabler, A. Agarwal, M. Flint, S.S. du Plessis, Obesity: modern man’s fertility nemesis. Asian J. Androl. 12, 480–9 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Y. Wang, Is obesity associated with early sexual maturation? A comparison of the association in American boys versus girls. Pediatrics 110, 903–10 (2002)CrossRefPubMedGoogle Scholar
  9. 9.
    J.E. Blundell, J.L. Baker, E. Boyland, E. Blaak, J. Charzewska, S. de Henauw, G. Frühbeck, M. Gonzalez-Gross, J. Hebebrand, L. Holm, V. Kriaucioniene, L. Lissner, J.M. Oppert, K. Schindler, A.M. Silva, E. Woodward, Variations in the prevalence of obesity among European countries and a consideration of possible causes. Obes. Facts 10, 25–37 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    C.L. Ogden, M.D. Carroll, C.D. Fryar, K.M. Flegal, Prevalence of obesity among adults and youth: United States, 2011–2014. (US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, 2015).Google Scholar
  11. 11.
    National Health and Family Planning Commission of the PRC, 2014 Report on Chinese resident’s chronic disease and nutrition. (2015).Google Scholar
  12. 12.
    W. Kiess, I.V. Wagner, J. Kratzsch, A. Körner, Male obesity. Endocrinol. Metab. Clin. North Am. 44, 761–72 (2015)CrossRefPubMedGoogle Scholar
  13. 13.
    S.S. Du Plessis, S. Cabler, D.A. McAlister, E. Sabanegh, A. Agarwal, The effect of obesity on sperm disorders and male infertility. Nat. Rev. Urol. 7, 153–61 (2010)CrossRefPubMedGoogle Scholar
  14. 14.
    N.O. Palmer, H.W. Bakos, T. Fullston, M. Lane, Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis 2, 253–63 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    G. Ciocca, E. Limoncin, E. Carosa, S. Di Sante, G.L. Gravina, D. Mollaioli, D. Gianfrilli, A. Lenzi, E.A. Jannini, Is Testosterone a Food for the Brain? Sex. Med. Rev. 4, 15–25 (2016)CrossRefPubMedGoogle Scholar
  16. 16.
    J.T. George, R.P. Millar, R.A. Anderson, Hypothesis: kisspeptin mediates male hypogonadism in obesity and type 2 diabetes. Neuroendocrinology 91, 302–7 (2010)CrossRefPubMedGoogle Scholar
  17. 17.
    A. Olivares, J.P. Méndez, E. Zambrano, M. Cárdenas, A. Tovar, G. Perera-Marín, A. Ulloa-Aguirre, Reproductive axis function and gonadotropin microheterogeneity in a male rat model of diet-induced obesity. Gen. Comp. Endocrinol. 166, 356–64 (2010)CrossRefPubMedGoogle Scholar
  18. 18.
    S.R. Ojeda, C. Dubay, A. Lomniczi, G. Kaidar, V. Matagne, U.S. Sandau, G.A. Dissen, Gene networks and the neuroendocrine regulation of puberty. Mol. Cell Endocrinol. 324, 3–11 (2010)CrossRefPubMedGoogle Scholar
  19. 19.
    M.A. Sánchez-Garrido, F. Ruiz-Pino, M. Manfredi-Lozano, S. Leon, D. Garcia-Galiano, J.P. Castaño, R.M. Luque, A. Romero-Ruiz, J.M. Castellano, C. Diéguez, L. Pinilla, M. Tena-Sempere, Obesity-induced hypogonadism in the male: premature reproductive neuroendocrine senescence and contribution of Kiss1-mediated mechanisms. Endocrinology 155, 1067–79 (2014)CrossRefPubMedGoogle Scholar
  20. 20.
    Y.J. Rhie, Kisspeptin/G protein-coupled receptor-54 system as an essential gatekeeper of pubertal development. Ann. Pediatr. Endocrinol. Metab. 18, 55–59 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    D. Garcia-Galiano, S.J. Allen, C.F. Elias, Role of the adipocyte-derived hormone leptin in reproductive control. Horm. Mol. Biol. Clin. Investig. 19, 141–9 (2014)PubMedPubMedCentralGoogle Scholar
  22. 22.
    J. Wauman, J. Tavernier, Leptin receptor signaling: pathways to leptin resistance. Front. Biosci. 16, 2771–93 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Mahmoodzadeh Sagheb, N. Azarpira, R. Yaghobi, The effect of leptin and adiponectin on KiSS-1 and KissR mRNA expression in rat islets of langerhans and CRI-D2 cell line. Int J. Endocrinol. Metab. 12, e15297 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    L. Pinilla, E. Aguilar, C. Dieguez, R.P. Millar, M. Tena-Sempere, Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol. Rev. 92, 1235–316 (2012)CrossRefPubMedGoogle Scholar
  25. 25.
    H. Mathew, V.D. Castracane, C. Mantzoros, Adipose tissue and reproductive health. Metabolism (2017).  https://doi.org/10.1016/j.metabol.2017.11.006.CrossRefPubMedGoogle Scholar
  26. 26.
    Y. Iwasaki, Y. Maejima, S. Suyama, M. Yoshida, T. Arai, K. Katsurada, P. Kumari, H. Nakabayashi, M. Kakei, T. Yada, Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R360–R369 (2015)CrossRefPubMedGoogle Scholar
  27. 27.
    T. Kusakabe, K. Ebihara, T. Sakai, L. Miyamoto, D. Aotani, Y. Yamamoto, S. Yamamoto-Kataoka, M. Aizawa-Abe, J. Fujikura, K. Hosoda, K. Nakao, Amylin improves the effect of leptin on insulin sensitivity in leptin-resistant diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 302, E924–E931 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    J. Zhao, L. Zhai, Z. Liu, S. Wu, L. Xu, Leptin level and oxidative stress contribute to obesity-induced low testosterone in murine testicular tissue. Oxid. Med Cell Longev. 2014, 190945 (2014)PubMedPubMedCentralGoogle Scholar
  29. 29.
    B.E. Levin, R.E. Keesey, Defense of differing body weight set points in diet-induced obese and resistant rats. Am. J. Physiol. 274, R412–R419 (1998)PubMedGoogle Scholar
  30. 30.
    WHO. WHO Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction. (Cambridge University Press, Cambridge, 1999)Google Scholar
  31. 31.
    K.J. Teerds, D.G. de Rooij, J. Keijer, Functional relationship between obesity and male reproduction: from humans to animal models. Hum. Reprod. Update 17, 667–83 (2011)CrossRefPubMedGoogle Scholar
  32. 32.
    P.M. Mah, G.A. Wittert, Obesity and testicular function. Mol. Cell Endocrinol. 316, 180–6 (2010)CrossRefPubMedGoogle Scholar
  33. 33.
    G.Y. Bédécarrats, Control of the reproductive axis: balancing act between stimulatory and inhibitory inputs. Poult. Sci. 94, 810–5 (2015)CrossRefPubMedGoogle Scholar
  34. 34.
    P. Dandona, S. Dhindsa, A. Chaudhuri, V. Bhatia, S. Topiwala, P. Mohanty, Hypogonadotrophic hypogonadism in type 2 diabetes, obesity and the metabolic syndrome. Curr. Mol. Med 8, 816–28 (2008)CrossRefPubMedGoogle Scholar
  35. 35.
    Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, J.M. Friedman, Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–32 (1994)CrossRefPubMedGoogle Scholar
  36. 36.
    C.R. McCartney, K.A. Prendergast, S.K. Blank, K.D. Helm, S. Chhabra, J.C. Marshall, Maturation of luteinizing hormone (gonadotropin-releasing hormone) secretion across puberty: evidence for altered regulation in obese peripubertal girls. J. Clin. Endocrinol. Metab. 94, 56–66 (2009)CrossRefPubMedGoogle Scholar
  37. 37.
    F.F. Casanueva, C. Dieguez, Neuroendocrine regulation and actions of leptin. Front Neuroendocrinol. 20, 317–63 (1999)CrossRefPubMedGoogle Scholar
  38. 38.
    M.J. Cunningham, D.K. Clifton, R.A. Steiner, Leptin’s actions on the reproductive axis: perspectives and mechanisms. Biol. Reprod. 60, 216–22 (1999)CrossRefPubMedGoogle Scholar
  39. 39.
    J. Roa, E. Aguilar, C. Dieguez, L. Pinilla, M. Tena-Sempere, New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Front Neuroendocrinol. 29, 48–69 (2008)CrossRefPubMedGoogle Scholar
  40. 40.
    J.M. Castellano, V.M. Navarro, R. Fernández-Fernández, J. Roa, E. Vigo, R. Pineda, C. Dieguez, E. Aguilar, L. Pinilla, M. Tena-Sempere, Expression of hypothalamic KiSS-1 system and rescue of defective gonadotropic responses by kisspeptin in streptozotocin-induced diabetic male rats. Diabetes 55, 2602–10 (2006)CrossRefPubMedGoogle Scholar
  41. 41.
    A.E. Oakley, D.K. Clifton, R.A. Steiner, Kisspeptin signaling in the brain. Endocr. Rev. 30, 713–43 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    A.K. Roseweir, A.S. Kauffman, J.T. Smith, K.A. Guerriero, K. Morgan, J. Pielecka-Fortuna, R. Pineda, M.L. Gottsch, M. Tena-Sempere, S.M. Moenter, E. Terasawa, I.J. Clarke, R.A. Steiner, R.P. Millar, Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J. Neurosci. 29, 3920–9 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    J.T. George, R.A. Anderson, R.P. Millar, Kisspeptin-10 stimulation of gonadotrophin secretion in women is modulated by sex steroid feedback. Hum. Reprod. 27, 3552–9 (2012)CrossRefPubMedGoogle Scholar
  44. 44.
    J.M. Castellano, J. Roa, R.M. Luque, C. Dieguez, E. Aguilar, L. Pinilla, M. Tena-Sempere, KiSS-1/kisspeptins and the metabolic control of reproduction: physiologic roles and putative physiopathological implications. Peptides 30, 139–45 (2009)CrossRefPubMedGoogle Scholar
  45. 45.
    R.M. Luque, R.D. Kinema, M. Tena-Sempere, Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line. Endocrinology 148, 4601–11 (2007)CrossRefPubMedGoogle Scholar
  46. 46.
    J.T. Smith, B.V. Acohido, D.K. Clifton, R.A. Steiner, KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J. Neuroendocrinol. 18, 298–303 (2006)CrossRefPubMedGoogle Scholar
  47. 47.
    J. Wilsey, P.J. Scarpace, Caloric restriction reverses the deficits in leptin receptor protein and leptin signaling capacity associated with diet-induced obesity: role of leptin in the regulation of hypothalamic long-form leptin receptor expression. J. Endocrinol. 181, 297–306 (2004)CrossRefPubMedGoogle Scholar
  48. 48.
    Y.M. Han, G.M. Kang, K. Byun, H.W. Ko, J. Kim, M.S. Shin, H.K. Kim, S.Y. Gil, J.H. Yu, B. Lee, M.S. Kim, Leptin-promoted cilia assembly is critical for normal energy balance. J. Clin. Invest 124, 2193–7 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    M. Schneeberger, M.O. Dietrich, D. Sebastián, M. Imbernón, C. Castaño, A. Garcia, Y. Esteban, A. Gonzalez-Franquesa, I.C. Rodríguez, A. Bortolozzi, P.M. Garcia-Roves, R. Gomis, R. Nogueiras, T.L. Horvath, A. Zorzano, M. Claret, Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–87 (2013)CrossRefPubMedGoogle Scholar
  50. 50.
    M.G. Jr Myers, S.B. Heymsfield, C. Haft, B.B. Kahn, M. Laughlin, R.L. Leibel, M.H. Tschöp, J.A. Yanovski, Challenges and opportunities of defining clinical leptin resistance. Cell Metab. 15, 150–6 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    J. Clarkson, A.E. Herbison, Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 12, 5817–25 (2006)CrossRefGoogle Scholar
  52. 52.
    J.T. Smith, H.M. Dungan, E.A. Stoll, M.L. Gottsch, R.E. Braun, S.M. Eacker, D.K. Clifton, R.A. Steiner, Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 7, 2976–84 (2005)CrossRefGoogle Scholar
  53. 53.
    K. Backholer, J. Smith, I.J. Clarke, Melanocortins may stimulate reproduction by activating orexin neurons in the dorsomedial hypothalamus and kisspeptin neurons in the preoptic area of the ewe. Endocrinology 12, 5488–97 (2009)CrossRefGoogle Scholar
  54. 54.
    L. Pinilla, E. Aguilar, C. Dieguez, R.P. Millar, M. Tena-Sempere, Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol. Rev. 3, 1235–316 (2012)CrossRefGoogle Scholar
  55. 55.
    Z. Javed, U. Qamar, T. Sathyapalan, The role of kisspeptin signalling in the hypothalamic-pituitary-gonadal axis-current perspective. Endokrynol. Pol. 6, 534–47 (2015)CrossRefGoogle Scholar
  56. 56.
    R. Chianese, V. Ciaramella, S. Fasano, R. Pierantoni, R. Meccariello, Kisspeptin drives germ cell progression in the anuran amphibian Pelophylax esculentus: a study carried out in ex vivo testes. Gen. Comp. Endocrinol. 211, 81–91 (2015)CrossRefPubMedGoogle Scholar
  57. 57.
    Y. Mu, W.J. Yan, T.L. Yin, J. Yang, Curcumin ameliorates high-fat diet-induced spermatogenesis dysfunction. Mol. Med Rep. 14, 3588–94 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    R. Meccariello, R. Chianese, T. Chioccarelli, V. Ciaramella, S. Fasano, R. Pierantoni, G. Cobellis, Intra-testicular signals regulate germ cell progression and production of qualitatively mature spermatozoa in vertebrates. Front. Endocrinol. 5, 69 (2014)Google Scholar
  59. 59.
    M.N. Fui, P. Dupuis, M. Grossmann, Lowered testosterone in male obesity: mechanisms, morbidity and management. Asian J. Androl. 16, 223–31 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    A.M. Isidori, M. Caprio, F. Strollo, C. Moretti, G. Frajese, A. Isidori, A. Fabbri, Leptin and androgens in male obesity: Evidence for leptin contribution to reduced androgen levels. J. Clin. Endocrinol. Metab. 84, 3673–80 (1999)PubMedGoogle Scholar
  61. 61.
    H. Zhang, K. Taya, K. Nagaoka, M. Yoshida, G. Watanabe, Neonatal exposure to 17α-ethynyl estradiol (EE) disrupts follicle development and reproductive hormone profiles in female rats. Toxicol. Lett. 276, 92–99 (2017)CrossRefPubMedGoogle Scholar
  62. 62.
    E. Pruszyńska-Oszmałek, P.A. Kołodziejski, M. Sassek, J.H. Sliwowska, Kisspeptin-10 inhibits proliferation and regulates lipolysis and lipogenesis processes in 3T3-L1 cells and isolated rat adipocytes. Endocrine 56, 54–64 (2017)CrossRefPubMedGoogle Scholar
  63. 63.
    M. Dudek, P.A. Kołodziejski, E. Pruszyńska-Oszmałek, M. Sassek, K. Ziarniak, K.W. Nowak, J.H. Sliwowska, Effects of high-fat diet-induced obesity and diabetes on Kiss1 and GPR54 expression in the hypothalamic-pituitary-gonadal (HPG) axis and peripheral organs (fat, pancreas and liver) in male rats. Neuropeptides 56, 41–9 (2016)CrossRefPubMedGoogle Scholar
  64. 64.
    M.A. Hussain, W.J. Song, A. Wolfe, There is Kisspeptin-and then there is Kisspeptin. Trends Endocrinol. Metab. 26, 564–72 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    W.J. Song, P. Mondal, A. Wolfe, L.C. Alonso, R. Stamateris, B.W. Ong, O.C. Lim, K.S. Yang, S. Radovick, H.J. Novaira, E.A. Farber, C.R. Farber, S.D. Turner, M.A. Hussain, Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metab. 19, 667–81 (2014)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lingling Zhai
    • 1
  • Jian Zhao
    • 2
  • Yiming Zhu
    • 3
  • Qiannan Liu
    • 1
  • Wenhua Niu
    • 1
  • Chengyin Liu
    • 1
  • Yi Wang
    • 4
  1. 1.Department of Maternal and Child Health, School of Public HealthChina Medical UniversityShenyangChina
  2. 2.Department of PharmacologyShenyang Pharmaceutical UniversityShenyangChina
  3. 3.Seven-Year-program Clinical Medicine Students (100K71B)China Medical UniversityShenyangChina
  4. 4.Environment and Non-communicable Disease Research Center, School of Public HealthChina Medical UniversityShenyangChina

Personalised recommendations