Advertisement

Endocrine

, Volume 60, Issue 3, pp 395–406 | Cite as

A score derived from routine biochemical parameters increases the diagnostic accuracy of chromogranin A in detecting patients with neuroendocrine neoplasms

  • Ivan Kruljac
  • Ivan Vurnek
  • Sebastian Maasberg
  • Davor Kust
  • Kristina Blaslov
  • Blaženka Ladika Davidović
  • Mario Štefanović
  • Alma Demirović
  • Alen Bišćanin
  • Jakša Filipović-Čugura
  • Jasmina Marić Brozić
  • Ulrich-Frank Pape
  • Milan Vrkljan
Endocrine Methods and Techniques
  • 100 Downloads

Abstract

Background

Chromogranin A (CgA) is a valuable biomarker for detection and follow-up of patients with neuroendocrine neoplasms (NENs). However, various comorbidities may influence serum CgA, which decreases its diagnostic accuracy. We aimed to investigate which laboratory parameters are independently associated with increased CgA in real-life setting and to develop a scoring system, which could improve the diagnostic accuracy of CgA in detecting patients with NENs.

Methods

This retrospective study included 55 treatment naïve patients with NENs and160 patients with various comorbidities but without NEN (nonNENs). Scoring system (CgA-score) was developed based on z-scores obtained from receiver operating curve analysis for each parameter that was associated with elevated serum CgA in nonNENs.

Results

CgA correlated positively with serum BUN, creatinine, α2-globulin, red-cell distribution width, erythrocyte sedimentation rate, plasma glucose and correlated inversely with hemoglobin, thrombocytes and serum albumin. Serum CgA was also associated with the presence of chronic renal failure, arterial hypertension and diabetes and the use of PPI. In the entire study population, CgA showed an area under the curve of 0.656. Aforementioned parameters were used to develop a CgA-score. In a cohort of patients with CgA-score <12.0 (N = 87), serum CgA >156.5 ng/ml had 77.8% sensitivity and 91.5% specificity for detecting NENs (AUC 0.841, 95% CI 0.713–0.969, P < 0.001). Serum CgA had no diagnostic value in detecting NENs in patients with CgA-score >12.0 (AUC 0.554, 95% CI 0.405–0.702, P = 0.430).

Conclusions

CgA-score encompasses a wide range of comorbidities and represents a promising tool that could improve diagnostic performance of CgA in everyday clinical practice.

Keywords

Chromogranin A Comorbidity Diagnostic accuracy Score Neuroendocrine neoplasm 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12020_2018_1592_MOESM1_ESM.pdf (65 kb)
Supplementary appendix

References

  1. 1.
    L. Taupenot, K.L. Harper, D.T. O’Connor, The chromogranin–secretogranin family. N. Engl. J. Med. 348, 1134–1149 (2003)CrossRefPubMedGoogle Scholar
  2. 2.
    Y.P. Loh, Y. Cheng, S.K. Mahata, A. Corti, B. Tota, Chromogranin A and derived peptides in health and disease. J. Mol. Neurosci. 48, 347–356 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    D. Belloni, S. Scabini, C. Foglieni, L. Veschini, A. Giazzon, B. Colombo et al. The vasostatin-I fragment of chromogranin A inhibits VEGF-induced endothelial cell proliferation and migration. Faseb. J. 21, 3052–3062 (2007)CrossRefPubMedGoogle Scholar
  4. 4.
    E. Ferrero, S. Scabini, E. Magni, C. Foglieni, D. Belloni, B. Colombo et al. Chromogranin A protects vessels against tumor necrosis factor-induced vascular leakage. FASEB J. 18, 554–556 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    B. Tota, S. Gentile, T. Pasqua, E. Bassino, H. Koshimizu, N.X. Cawley et al. The novel chromogranin A-derived serpinin and pyroglutaminated serpinin peptides are positive cardiac β-adrenergic-like inotropes. FASEB J. Fed. Am. Soc. Exp. Biol. 26, 2888–2898 (2012)PubMedGoogle Scholar
  6. 6.
    V. Sánchez-Margalet, C. González-Yanes, S. Najib, J. Santos-Álvarez, Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. Regul. Pept. 161, 8–14 (2010)CrossRefPubMedGoogle Scholar
  7. 7.
    M.M. Fung, R.M. Salem, P. Mehtani, B. Thomas, C.F. Lu, B. Perez et al. Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin. Exp. Hypertens. 32, 278–287 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    D. Zhang, T. Lavaux, A.-C. Voegeli, T. Lavigne, V. Castelain, N. Meyer et al. Prognostic value of chromogranin a at admission in critically ill patients: a cohort study in a medical intensive care unit. Clin. Chem. 54, 1497–1503 (2008)CrossRefPubMedGoogle Scholar
  9. 9.
    G. Di Comite, C.M. Rossi, A. Marinosci, K. Lolmede, E. Baldissera, P. Aiello et al. Circulating chromogranin A reveals extra-articular involvement in patients with rheumatoid arthritis and curbs TNF- -elicited endothelial activation. J. Leukoc. Biol. 85, 81–87 (2008)CrossRefPubMedGoogle Scholar
  10. 10.
    V. Sciola, S. Massironi, D. Conte, F. Caprioli, S. Ferrero, C. Ciafardini et al. Plasma chromogranin a in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 15, 867–871 (2009)CrossRefPubMedGoogle Scholar
  11. 11.
    A. Zissimopoulos, S. Vradelis, M. Konialis, D. Chadolias, A. Bampali, T. Constantinidis et al. Chromogranin A as a biomarker of disease activity and biologic therapy in inflammatory bowel disease: a prospective observational study. Scand. J. Gastroenterol. 49, 942–949 (2014)CrossRefPubMedGoogle Scholar
  12. 12.
    P. Gut, A. Czarnywojtek, J. Fischbach, M. Bączyk, K. Ziemnicka, E. Wrotkowska et al. Chromogranin A—unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls. Arch. Med. Sci. Terme. Publ. 12, 1–9 (2016)Google Scholar
  13. 13.
    P.R. Bech, R. Ramachandran, W.S. Dhillo, N.M. Martin, S.R. Bloom, Quantifying the effects of renal impairment on plasma concentrations of the neuroendocrine neoplasia biomarkers chromogranin A, chromogranin B, and cocaine and amphetamine-regulated transcript. Clin. Chem. 58, 941–943 (2012).CrossRefPubMedGoogle Scholar
  14. 14.
    C. Ceconi, R. Ferrari, T. Bachetti, C. Opasich, M. Volterrani, B. Colombo et al. Chromogranin A in heart failure. A novel neurohumoral factor and a predictor for mortality. Eur. Heart J. 23, 967–974 (2002)CrossRefPubMedGoogle Scholar
  15. 15.
    M.E. Estensen, A. Hognestad, U. Syversen, I. Squire, L. Ng, J. Kjekshus et al.Prognostic value of plasma chromogranin A levels in patients with complicated myocardial infarction. Am. Heart J. 152, 927.e1–927.e6 (2006)CrossRefGoogle Scholar
  16. 16.
    M.A. Takiyyuddin, R.J. Parmer, M.T. Kailasam, J.H. Cervenka, B. Kennedy, M.G. Ziegler et al., Chromogranin A in human hypertension. Hypertension 26, 213–220 (1995).CrossRefPubMedGoogle Scholar
  17. 17.
    M. Peracchi, C. Gebbia, G. Basilisco, M. Quatrini, C. Tarantino, C. Vescarelli et al. Plasma chromogranin A in patients with autoimmune chronic atrophic gastritis, enterochromaffin-like cell lesions and gastric carcinoids. Eur. J. Endocrinol. 152, 443–448 (2005)CrossRefPubMedGoogle Scholar
  18. 18.
    I. Pregun, L. Herszényi, M. Juhász, P. Miheller, I. Hritz, A. Patócs et al. Effect of proton-pump inhibitor therapy on serum chromogranin a level. Digestion 84, 22–28 (2011)CrossRefPubMedGoogle Scholar
  19. 19.
    K. Oberg, A. Couvelard, G. Delle Fave, D. Gross, A. Grossman, R.T. Jensen et al. ENETS Consensus Guidelines for Standard of Care in Neuroendocrine Tumours: Biochemical Markers. Neuroendocrinology 105, 201–211 (2017)CrossRefPubMedGoogle Scholar
  20. 20.
    S. Welin, M. Stridsberg, J. Cunningham, D. Granberg, B. Skogseid, B. Eriksson et al. Elevated plasma chromogranin a is the first indication of recurrence in radically operated midgut carcinoid tumors. Neuroendocrinology 89, 302–307 (2009)CrossRefPubMedGoogle Scholar
  21. 21.
    J.C. Yao, C. Lombard-Bohas, E. Baudin, L.K. Kvols, P. Rougier, P. Ruszniewski et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J. Clin. Oncol. 28, 69–76 (2010)CrossRefPubMedGoogle Scholar
  22. 22.
    B. Lawrence, B.I. Gustafsson, M. Kidd, M. Pavel, B. Svejda, I.M. Modlin, The clinical relevance of chromogranin a as a biomarker for gastroenteropancreatic neuroendocrine tumors. Endocrinol. Metab. Clin. North Am. 40, 111–134 (2011)CrossRefPubMedGoogle Scholar
  23. 23.
    V. Marotta, V. Nuzzo, T. Ferrara, A. Zuccoli, M. Masone, L. Nocerino et al. Limitations of Chromogranin A in clinical practice. Biomarkers 17(2), 186–191 (2012)CrossRefPubMedGoogle Scholar
  24. 24.
    S. Nölting, A. Kuttner, M. Lauseker, M. Vogeser, A. Haug, K.A. Herrmann et al. Chromogranin A as serum marker for gastroenteropancreatic neuroendocrine tumors: a single center experience and literature review. Cancers (Basel) 4, 141–155 (2012)CrossRefGoogle Scholar
  25. 25.
    A. Tirosh, G.Z. Papadakis, C. Millo, S.M. Sadowski, P. Herscovitch, K. Pacak et al. Association between neuroendocrine tumors biomarkers and primary tumor site and disease type based on total 68Ga-DOTATATE-Avid tumor volume measurements. Eur. J. Endocrinol. 176, 575–582 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    M. Stridsberg, B. Eriksson, K. Oberg, E.T. Janson, A comparison between three commercial kits for chromogranin A measurements. J. Endocrinol. 177, 337–341 (2003)CrossRefPubMedGoogle Scholar
  27. 27.
    P. Glinicki, R. Kapuścińska, W. Jeske, Improved diagnostic accuracy for neuroendocrine neoplasms using two chromogranin A assays: the importance of protein matrix effects. Clin. Endocrinol. (Oxf.). 79, 295–296 (2013)CrossRefPubMedGoogle Scholar
  28. 28.
    M. Pavel, E. Baudin, A. Couvelard, E. Krenning, K. Öberg, T. Steinmüller et al. ENETS consensus guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology 95, 157–176 (2012)CrossRefPubMedGoogle Scholar
  29. 29.
    C.A. Elisa, Instructions for use Chromogranin A ELISA DEE9000 (2016), Accessed 11 Sep 2017, http://www.ibl-international.com/en/chromogranin-a-elisa
  30. 30.
    I.M. Modlin, I. Drozdov, D. Alaimo, S. Callahan, N. Teixiera, L. Bodei et al. A multianalyte PCR blood test outperforms single analyte ELISAs (chromogranin A, pancreastatin, neurokinin A) for neuroendocrine tumor detection. Endocr. Relat. Cancer 21, 615–628 (2014)CrossRefPubMedGoogle Scholar
  31. 31.
    I.M. Modlin, M. Kidd, L. Bodei, I. Drozdov, H. Aslanian, The clinical utility of a novel blood-based multi-transcriptome assay for the diagnosis of neuroendocrine tumors of the gastrointestinal tract. Am. J. Gastroenterol. 110, 1223–1232 (2015)CrossRefPubMedGoogle Scholar
  32. 32.
    S. Massironi, M. Fraquelli, S. Paggi, A. Sangiovanni, D. Conte, V. Sciola et al. Chromogranin A levels in chronic liver disease and hepatocellular carcinoma. Dig. Liver. Dis. 41, 31–35 (2009)CrossRefPubMedGoogle Scholar
  33. 33.
    S. Doğan, N. Atakan, Red blood cell distribution width is a reliable marker of inflammation in plaque psoriasis. Acta Dermatovenerol. Croat. 25, 26–31 (2017)PubMedGoogle Scholar
  34. 34.
    V. Veeranna, S.K. Zalawadiya, S. Panaich, K.V. Patel, L. Afonso, Comparative analysis of red cell distribution width and high sensitivity C-reactive protein for coronary heart disease mortality prediction in multi-ethnic population: Findings from the 1999–2004 NHANES. Int. J. Cardiol. 168, 5156–5161 (2013)CrossRefPubMedGoogle Scholar
  35. 35.
    Z.-D. Hu, Y. Chen, L. Zhang, Y. Sun, Y.-L. Huang, Q.-Q. Wang et al. Red blood cell distribution width is a potential index to assess the disease activity of systemic lupus erythematosus. Clin. Chim. Acta 425, 202–205 (2013)CrossRefPubMedGoogle Scholar
  36. 36.
    N.S. Ku, H. Kim, H.J. Oh, Y.C. Kim, M.H. Kim, J.E. Song et al. Red blood cell distribution width is an independent predictor of mortality in patients with gram-negative bacteremia. Shock 38, 123–127 (2012)CrossRefPubMedGoogle Scholar
  37. 37.
    J.H. Lee, H.J. Chung, K. Kim, Y.H. Jo, J.E. Rhee, Y.J. Kim et al. Red cell distribution width as a prognostic marker in patients with community-acquired pneumonia. Am. J. Emerg. Med. 31, 72–79 (2013)CrossRefPubMedGoogle Scholar
  38. 38.
    T. Isakova, P. Wahl, G.S. Vargas, O.M. Gutiérrez, J. Scialla, H. Xie et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79, 1370–1378 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    J. Silver, T. Naveh-Many, Phosphate and the parathyroid. Kidney Int. 75, 898–905 (2009)CrossRefPubMedGoogle Scholar
  40. 40.
    R.F. Ritchie, G.E. Palomaki, L.M. Neveux, O. Navolotskaia, T.B. Ledue, W.Y. Craig, Reference distributions for alpha2-macroglobulin: a practical, simple and clinically relevant approach in a large cohort. J. Clin. Lab. Anal. 18, 139–147 (2004)CrossRefPubMedGoogle Scholar
  41. 41.
    Healthcare statistics—statistics explained, http://ec.europa.eu/eurostat/statistics-explained/index.php/Healthcare_statistics. Accessed 11 Sept 2017
  42. 42.
    Y. Wang, Q. Yang, Y. Lin, L. Xue, M. Chen, J. Chen, Chromogranin A as a marker for diagnosis, treatment, and survival in patients with gastroenteropancreatic neuroendocrine neoplasm. Medicine. (Baltim.). 93, e247 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Massironi, R.E. Rossi, G. Casazza, D. Conte, C. Ciafardini, M. Galeazzi et al. Chromogranin A in diagnosing and monitoring patients with gastroenteropancreatic neuroendocrine neoplasms: a large series from a single institution. Neuroendocrinology 100, 240–249 (2014)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ivan Kruljac
    • 1
  • Ivan Vurnek
    • 2
  • Sebastian Maasberg
    • 3
  • Davor Kust
    • 4
  • Kristina Blaslov
    • 1
  • Blaženka Ladika Davidović
    • 4
  • Mario Štefanović
    • 5
  • Alma Demirović
    • 6
  • Alen Bišćanin
    • 7
  • Jakša Filipović-Čugura
    • 8
  • Jasmina Marić Brozić
    • 4
  • Ulrich-Frank Pape
    • 3
  • Milan Vrkljan
    • 1
  1. 1.Department of Endocrinology, Diabetes and Metabolic Diseases “Mladen Sekso”University Hospital Center “Sestre Milosrdnice”, University of Zagreb School of MedicineZagrebCroatia
  2. 2.University of Zagreb School of MedicineZagrebCroatia
  3. 3.Department of Hepatology and Gastroenterology, ENETS Center of Excellence for Neuroendocrine Tumors, Charité Campus Mitte and Virchow ClinicCharité University MedicineBerlinGermany
  4. 4.Department of Oncology and Nuclear MedicineUniversity Hospital Center “Sestre Milosrdnice”ZagrebCroatia
  5. 5.Clinical Institute of ChemistryUniversity Hospital Center “Sestre Milosrdnice”, University of Zagreb Faculty of Pharmacy and BiochemistryZagrebCroatia
  6. 6.Department of PathologyUniversity Hospital Center “Sestre Milosrdnice”, University of Zagreb School of MedicineZagrebCroatia
  7. 7.Department of Gastroenterology and HepatologyUniversity Hospital Center “Sestre Milosrdnice”ZagrebCroatia
  8. 8.Department of SurgeryUniversity Hospital Center “Sestre Milosrdnice”ZagrebCroatia

Personalised recommendations