, Volume 60, Issue 3, pp 445–457 | Cite as

Targeting human 8-oxoguanine DNA glycosylase to mitochondria protects cells from high glucose-induced apoptosis

  • Yu-Ling Zou
  • Wen-Bin Luo
  • Lin Xie
  • Xin-Bang Mao
  • Chao Wu
  • Zhi-Peng You
Original Article



Diabetic retinopathy (DR) is a major vision threatening disease mainly induced by high glucose. Despite great efforts were made to explore the etiology of DR, the exact mechanism responsible for its pathogenesis remains elusive.


In our study, we constructed diabetic rats via Streptozotocin (STZ) injection. TUNEL assay was employed to examine retinal cell apoptosis. The levels of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed via flow cytometry. The mRNA and protein levels of mitochondrial respiratory chain were investigated by RT-qPCR and western blot.


Compared with normal rats, the retinal cell apoptosis rate in diabetic rats was significantly upregulated. What’s more, the signals of 8-OHdG and the levels of Cytochrome C in diabetic rats were enhanced; however, the MnSOD signals and NADPH-1 levels were reduced. We investigated the effect of mitochondrialy targeted hOGG1 (MTS-hOGG1) on the primary rRECs under high glucose. Compared with vector-transfected cells, MTS-hOGG1-expressing cells blocked high glucose-induced cell apoptosis, the loss of MMP and the overproduction of ROS. In addition, under high glucose, MTS-hOGG1 transfection blocked the expression of Cytochrome C, but enhanced the expression of cytochrome c oxidase subunit 1 and NADPH-1.


These findings indicated that high glucose induced cell apoptosis by causing the loss of MMP, the overproduction of ROS and mtDNA damage. Targeting DNA repair enzymes hOGG1 in mitochondria partly mitigated the high glucose-induced consequences, which shed new light for DR therapy.


Diabetic retinopathy Cell apoptosis Reactive oxygen species Oxidative stress 



diabetic retinopathy




mitochondrial membrane potential


reactive oxygen species


nicotinamide adenine dinucleotide phosphate I


cytochrome c oxidase subunit 1




manganese superoxide dismutase



This work was supported by the National Natural Science Foundation of China (No. 81460088).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    S. Saker, E.A. Stewart, A.C. Browning, C.L. Allen, W.M. Amoaku, The effect of hyperglycaemia on permeability and the expression of junctional complex molecules in human retinal and choroidal endothelial cells. Exp. Eye Res. 121, 161–167 (2014)CrossRefPubMedGoogle Scholar
  2. 2.
    X. Yu, Q. Liu, X. Wang, H. Liu, Y. Wang, 7,8-Dihydroxyflavone ameliorates high-glucose induced diabetic apoptosis in human retinal pigment epithelial cells by activating TrkB. Biochem. Biophys. Res. Commun. 495, 922–927 (2018).CrossRefPubMedGoogle Scholar
  3. 3.
    A. Castilho, C.A. Aveleira, E.C. Leal, N.F. Simoes, C.R. Fernandes, R.I. Meirinhos, F.I. Baptista, A.F. Ambrosio, Heme oxygenase-1 protects retinal endothelial cells against high glucose- and oxidative/nitrosative stress-induced toxicity. PLoS One 7, e42428 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    K. Trudeau, A.J. Molina, W. Guo, S. Roy, High glucose disrupts mitochondrial morphology in retinal endothelial cells: implications for diabetic retinopathy. Am. J. Pathol. 177, 447–455 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    K. Trudeau, T. Muto, S. Roy, Downregulation of mitochondrial connexin 43 by high glucose triggers mitochondrial shape change and cytochrome C release in retinal endothelial cells. Invest. Ophthalmol. Vis. Sci. 53, 6675–6681 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    R.A. Kowluru, Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxid. Redox Signal. 7, 1581–1587 (2005)CrossRefPubMedGoogle Scholar
  7. 7.
    M. Brownlee, The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615–1625 (2005)CrossRefPubMedGoogle Scholar
  8. 8.
    C.M. Chan, D.Y. Huang, Y.P. Huang, S.H. Hsu, L.Y. Kang, C.M. Shen, W.W. Lin, Methylglyoxal induces cell death through endoplasmic reticulum stress-associated ROS production and mitochondrial dysfunction. J. Cell Mol. Med. 20, 1749–1760 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    R.A. Kowluru, M. Mishra, Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim. Biophys. Acta 1852, 2474–2483 (2015)CrossRefPubMedGoogle Scholar
  10. 10.
    R.A. Kowluru, P.S. Chan, Oxidative stress and diabetic retinopathy. Exp. Diabetes Res. 2007, 43603 (2007)PubMedPubMedCentralGoogle Scholar
  11. 11.
    D.B. Naidoo, A. Phulukdaree, K. Anand, V. Sewram, A.A. Chuturgoon, Centella asiatica fraction-3 suppresses the nuclear factor erythroid 2-related factor 2 anti-oxidant pathway and enhances reactive oxygen species-mediated cell death in cancerous lung A549 cells. J. Med. Food 20, 959–968 (2017)CrossRefPubMedGoogle Scholar
  12. 12.
    Q. Cai, K.B. Storey, Anoxia-induced gene expression in turtle heart. Upregulation of mitochondrial genes for NADH-ubiquinone oxidoreductase subunit 5 and cytochrome c oxidase subunit 1. Eur. J. Biochem. 241, 83–92 (1996)CrossRefPubMedGoogle Scholar
  13. 13.
    L.L. Wang, Q.L. Yu, L. Han, X.L. Ma, R.D. Song, S.N. Zhao, W.H. Zhang, Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat. Food Chem. 244, 394–402 (2018)CrossRefPubMedGoogle Scholar
  14. 14.
    G. Alak, A. Ucar, V. Parlak, A.C. Yeltekin, I.H. Tas, D. Olmez, E.M. Kocaman, M. Yilgin, M. Atamanalp, T. Yanik, Assessment of 8-hydroxy-2-deoxyguanosine activity, gene expression and antioxidant enzyme activity on rainbow trout (Oncorhynchus mykiss) tissues exposed to biopesticide. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 203, 51–58 (2017)CrossRefPubMedGoogle Scholar
  15. 15.
    V.S. Anjana Vaman, S.K. Tinu, C.S. Geetha, K.K. Lissy, P.V. Mohanan, Effect of fibrin glue on antioxidant defense mechanism, oxidative DNA damage and chromosomal aberrations. Toxicol. Mech. Methods 23, 500–508 (2013)CrossRefPubMedGoogle Scholar
  16. 16.
    C. Xiao, M. He, Y. Nan, D. Zhang, B. Chen, Y. Guan, M. Pu, Physiological effects of superoxide dismutase on altered visual function of retinal ganglion cells in db/db mice. PLoS One 7, e30343 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    M. Kanwar, P.S. Chan, T.S. Kern, R.A. Kowluru, Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest. Ophthalmol. Vis. Sci. 48, 3805–3811 (2007)CrossRefPubMedGoogle Scholar
  18. 18.
    L. Douiev, B. Abu-Libdeh, A. Saada, Cytochrome c oxidase deficiency, oxidative stress, possible antioxidant therapy and link to nuclear DNA damage. Eur. J. Hum. Genet. (2018).
  19. 19.
    H.T. Lee, A. Bose, C.Y. Lee, P.L. Opresko, S. Myong, Molecular mechanisms by which oxidative DNA damage promotes telomerase activity. Nucleic Acids Res. 45, 11752–11765 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    G.L. Dianov, N. Souza-Pinto, S.G. Nyaga, T. Thybo, T. Stevnsner, V.A. Bohr, Base excision repair in nuclear and mitochondrial DNA. Prog. Nucleic Acid. Res. Mol. Biol. 68, 285–297 (2001)CrossRefPubMedGoogle Scholar
  21. 21.
    N.M. Druzhyna, S.B. Hollensworth, M.R. Kelley, G.L. Wilson, S.P. Ledoux, Targeting human 8-oxoguanine glycosylase to mitochondria of oligodendrocytes protects against menadione-induced oxidative stress. Glia 42, 370–378 (2003)CrossRefPubMedGoogle Scholar
  22. 22.
    A. Dhenaut, S. Hollenbach, I. Eckert, B. Epe, S. Boiteux, J.P. Radicella, Characterization of hOGG1 promoter structure, expression during cell cycle and overexpression in mammalian cells. Adv. Exp. Med. Biol. 500, 613–616 (2001)CrossRefPubMedGoogle Scholar
  23. 23.
    M.A. Ihnat, J.E. Thorpe, C.D. Kamat, C. Szabo, D.E. Green, L.A. Warnke, Z. Lacza, A. Cselenyak, K. Ross, S. Shakir, L. Piconi, R.C. Kaltreider, A. Ceriello, Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia 50, 1523–1531 (2007)CrossRefPubMedGoogle Scholar
  24. 24.
    R.A. Kowluru, Q. Zhong, M. Kanwar, Metabolic memory and diabetic retinopathy: role of inflammatory mediators in retinal pericytes. Exp. Eye Res. 90, 617–623 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Y.Y. Qu, M.Y. Yuan, Y. Liu, X.J. Xiao, Y.L. Zhu, The protective effect of epoxyeicosatrienoic acids on cerebral ischemia/reperfusion injury is associated with PI3K/Akt pathway and ATP-sensitive potassium channels. Neurochem. Res. 40, 1–14 (2015)CrossRefPubMedGoogle Scholar
  26. 26.
    K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001)CrossRefPubMedGoogle Scholar
  27. 27.
    S. Proietti, A. Cucina, M. Minini, M. Bizzarri, Melatonin, mitochondria, and the cancer cell. Cell Mol. Life. Sci. 74, 4015–4025 (2017)CrossRefPubMedGoogle Scholar
  28. 28.
    M.N. Marangoni, S.T. Brady, S.A. Chowdhury, M.R. Piano, The co-occurrence of myocardial dysfunction and peripheral insensate neuropathy in a streptozotocin-induced rat model of diabetes. Cardiovasc. Diabetol. 13, 11 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    T. Pelikanova, Diabetic retinopathy: pathogenesis and therapeutic implications. Vnitr. Lek. 62, 620–628 (2016)PubMedGoogle Scholar
  30. 30.
    J. Liu, Y. Jiang, J. Mao, B. Gu, H. Liu, B. Fang, High levels of glucose induces a dose-dependent apoptosis in human periodontal ligament fibroblasts by activating caspase-3 signaling pathway. Appl. Biochem. Biotechnol. 170, 1458–1471 (2013)CrossRefPubMedGoogle Scholar
  31. 31.
    C.S. Shin, B.S. Moon, K.S. Park, S.Y. Kim, S.J. Park, M.H. Chung, H.K. Lee, Serum 8-hydroxy-guanine levels are increased in diabetic patients. Diabetes Care 24, 733–737 (2001)CrossRefPubMedGoogle Scholar
  32. 32.
    S. Roy, K. Trudeau, T. Tien, K.F. Barrette, Mitochondrial dysfunction and endoplasmic reticulum stress in diabetic retinopathy: mechanistic insights into high glucose-induced retinal cell death. Curr. Clin. Pharmacol. 8, 278–284 (2013)CrossRefPubMedGoogle Scholar
  33. 33.
    Y. Wu, Z.Y. Xia, B. Zhao, Y. Leng, J. Dou, Q.T. Meng, S.Q. Lei, Z.Z. Chen, J. Zhu, (-)-Epigallocatechin-3-gallate attenuates myocardial injury induced by ischemia/reperfusion in diabetic rats and in H9c2 cells under hyperglycemic conditions. Int. J. Mol. Med. 40, 389–399 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    X. Gao, X. Zhang, J. Hu, X. Xu, Y. Zuo, Y. Wang, J. Ding, H. Xu, S. Zhu, Aconitine induces apoptosis in H9c2 cardiac cells via mitochondriamediated pathway. Mol. Med. Rep. 17, 284–292 (2018).PubMedGoogle Scholar
  35. 35.
    L. Xie, X. Zhu, Y. Hu, T. Li, Y. Gao, Y. Shi, S. Tang, Mitochondrial DNA oxidative damage triggering mitochondrial dysfunction and apoptosis in high glucose-induced HRECs. Invest. Ophthalmol. Vis. Sci. 49, 4203–4209 (2008)CrossRefPubMedGoogle Scholar
  36. 36.
    S. Zhao, T. Li, J. Li, Q. Lu, C. Han, N. Wang, Q. Qiu, H. Cao, X. Xu, H. Chen, Z. Zheng, miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia 59, 644–654 (2016)CrossRefPubMedGoogle Scholar
  37. 37.
    Q. Jiang, F. Zhao, X. Liu, R. Li, J. Liu, Effect of miR-200b on retinal endothelial cell function under high glucose environment. Int. J. Clin. Exp. Pathol. 8, 10482–10487 (2015)PubMedPubMedCentralGoogle Scholar
  38. 38.
    M. Hollborn, C. Petto, A. Steffen, S. Trettner, A. Bendig, P. Wiedemann, A. Bringmann, L. Kohen, Effects of thrombin on RPE cells are mediated by transactivation of growth factor receptors. Invest. Ophthalmol. Vis. Sci. 50, 4452–4459 (2009)CrossRefPubMedGoogle Scholar
  39. 39.
    R.J. Casson, G. Chidlow, J.P. Wood, N.N. Osborne, The effect of hyperglycemia on experimental retinal ischemia. Arch. Ophthalmol. 122, 361–366 (2004)CrossRefPubMedGoogle Scholar
  40. 40.
    L.V. Yuzefovych, V.A. Solodushko, G.L. Wilson, L.I. Rachek, Protection from palmitate-induced mitochondrial DNA damage prevents from mitochondrial oxidative stress, mitochondrial dysfunction, apoptosis, and impaired insulin signaling in rat L6 skeletal muscle cells. Endocrinology 153, 92–100 (2012)CrossRefPubMedGoogle Scholar
  41. 41.
    A. Chatterjee, E. Mambo, Y. Zhang, T. Deweese, D. Sidransky, Targeting of mutant hogg1 in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress. BMC Cancer 6, 235 (2006)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu-Ling Zou
    • 1
  • Wen-Bin Luo
    • 1
  • Lin Xie
    • 1
  • Xin-Bang Mao
    • 1
  • Chao Wu
    • 1
  • Zhi-Peng You
    • 1
  1. 1.Department of OphthalmologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina

Personalised recommendations