, Volume 60, Issue 2, pp 282–291 | Cite as

The associations of metabolic syndrome with incident hypertension, type 2 diabetes mellitus and chronic kidney disease: a cohort study

  • Chengyi Ding
  • Zhirong Yang
  • Shengfeng Wang
  • Feng Sun
  • Siyan Zhan
Original Article



Metabolic syndrome (MetS) has been extensively studied for its long-term health effects, typically through conventional Cox proportional hazards regression modeling of the overall association of MetS with a single outcome. Such an approach neglects the inherent links between MetS-related disease outcomes and fails to provide sufficient insights into the impact of each component of MetS over time.


We therefore conducted a retrospective cohort study of 63,680 individuals who received health check-ups at the MJ Health Screening Center in Taiwan from 1997–2005 to study the subsequent risks of hypertension, type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) simultaneously for MetS and its components. Multivariate-adjusted hazard ratios (HRs) were calculated using Cox models for multiple failure outcomes.


At baseline, MetS was identified in 7835 participants. Over a median follow-up of 3 years, 8252, 1634, and 6714 participants developed hypertension, T2DM and CKD, respectively. The HR for MetS was 2.41 (95% CI 2.29–2.53) for hypertension, 5.17 (95% CI 4.68–5.71) for T2DM and 1.22 (95% CI 1.15–1.31) for CKD. Three MetS components showed the strongest association with each of the outcomes: elevated blood pressure with hypertension (HR = 3.62, 95% CI 3.46–3.79), raised fasting plasma glucose with T2DM (HR = 8.89, 95% CI 7.86–10.06) and elevated triglycerides with CKD (HR = 1.14, 95% CI 1.08–1.21).


MetS may help identify individuals with metabolic profiles that confer incremental risks for multiple diseases. Additionally, several components of the syndrome should be considered by clinicians, as they show stronger associations with specific diseases than MetS.


Chronic kidney disease Cohort study Hypertension Metabolic syndrome Risk factor Type 2 diabetes mellitus 



This study was supported by the National Natural Science Foundation of China (grant number: 71673003) and the Interdisciplinary Fund from Peking University (grant number: BMU20160581).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

For this type of study formal consent is not required.

Supplementary material

12020_2018_1552_MOESM1_ESM.docx (29 kb)
Online Resource 1


  1. 1.
    C.K. Roberts, A.L. Hevener, R.J. Barnard, Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr. Physiol. 3(1), 1–58 (2013). PubMedPubMedCentralGoogle Scholar
  2. 2.
    J. Kaur, A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. (2014).
  3. 3.
    National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106(25), 3143–3421 (2002)Google Scholar
  4. 4.
    C. Day, Metabolic syndrome, or what you will: definitions and epidemiology. Diab. Vasc. Dis. Res. 4(1), 32–38 (2007). CrossRefPubMedGoogle Scholar
  5. 5.
    M. Aguilar, T. Bhuket, S. Torres, B. Liu, R.J. Wong, Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA 313(19), 1973–1974 (2015). CrossRefPubMedGoogle Scholar
  6. 6.
    R. Li, W. Li, Z. Lun, H. Zhang, Z. Sun, J.S. Kanu, S. Qiu, Y. Cheng, Y. Liu, Prevalence of metabolic syndrome in Mainland China: a meta-analysis of published studies. BMC Public Health 16, 296 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    P.W. Wilson, R.B. D’Agostino, H. Parise, L. Sullivan, J.B. Meigs, Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112(20), 3066–3072 (2005). CrossRefPubMedGoogle Scholar
  8. 8.
    J. Chen, P. Muntner, L.L. Hamm, D.W. Jones, V. Batuman, V. Fonseca, P.K. Whelton, J. He, The metabolic syndrome and chronic kidney disease in U.S. adults. Ann. Intern. Med. 140(3), 167–174 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    S.H. Wu, Z. Liu, S.C. Ho, Metabolic syndrome and all-cause mortality: a meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 25(6), 375–384 (2010). CrossRefPubMedGoogle Scholar
  10. 10.
    H. Putter, M. Fiocco, R.B. Geskus, Tutorial in biostatistics: competing risks and multi-state models. Stat. Med. 26(11), 2389–2430 (2007). CrossRefPubMedGoogle Scholar
  11. 11.
    Y.H. Shen, W.S. Yang, T.H. Lee, L.T. Lee, C.Y. Chen, K.C. Huang, Bright liver and alanine aminotransferase are associated with metabolic syndrome in adults. Obes. Res. 13(7), 1238–1245 (2005). CrossRefPubMedGoogle Scholar
  12. 12.
    G.L. Myers, W.G. Miller, J. Coresh, J. Fleming, N. Greenberg, T. Greene, T. Hostetter, A.S. Levey, M. Panteghini, M. Welch, J.H. Eckfeldt, Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin. Chem. 52(1), 5–18 (2006). CrossRefPubMedGoogle Scholar
  13. 13.
    WHO Expert Consultation: Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403), 157–163 (2004).
  14. 14.
    C.P. Wen, T.Y. Cheng, M.K. Tsai, Y.C. Chang, H.T. Chan, S.P. Tsai, P.H. Chiang, C.C. Hsu, P.K. Sung, Y.H. Hsu, S.F. Wen, All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 371(9631), 2173–2182 (2008). CrossRefPubMedGoogle Scholar
  15. 15.
    C.P. Wen, J.P. Wai, M.K. Tsai, Y.C. Yang, T.Y. Cheng, M.C. Lee, H.T. Chan, C.K. Tsao, S.P. Tsai, X. Wu, Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378(9798), 1244–1253 (2011). CrossRefPubMedGoogle Scholar
  16. 16.
    C.E. Tan, S. Ma, D. Wai, S.K. Chew, E.S. Tai, Can we apply the National Cholesterol Education Program Adult Treatment Panel definition of the metabolic syndrome to Asians? Diabetes Care 27(5), 1182–1186 (2004)CrossRefPubMedGoogle Scholar
  17. 17.
    National Institute for Health and Clinical Excellence: Hypertension: clinical management of primary hypertension in adults. (2011). Accessed 22 Nov 2017
  18. 18.
    A.S. Levey, J. Coresh, E. Balk, A.T. Kausz, A. Levin, M.W. Steffes, R.J. Hogg, R.D. Perrone, J. Lau, G. Eknoyan, National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Intern. Med. 139(2), 137–147 (2003)CrossRefPubMedGoogle Scholar
  19. 19.
    A.S. Levey, P.E. de Jong, J. Coresh, M. El Nahas, B.C. Astor, K. Matsushita, R.T. Gansevoort, B.L. Kasiske, K.U. Eckardt, The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 80(1), 17–28 (2011). CrossRefPubMedGoogle Scholar
  20. 20.
    G. Bellomo, S. Venanzi, C. Verdura, P. Saronio, A. Esposito, M. Timio, Association of uric acid with change in kidney function in healthy normotensive individuals. Am. J. Kidney Dis. 56(2), 264–272 (2010). CrossRefPubMedGoogle Scholar
  21. 21.
    L.J. Wei, D.Y. Lin, L. Weissfeld, Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Am. Stat. Assoc. 408(84), 1065–1073 (1989)CrossRefGoogle Scholar
  22. 22.
    B.M. Cheung, N.M. Wat, Y.B. Man, S. Tam, C.H. Cheng, G.M. Leung, J. Woo, E.D. Janus, C.P. Lau, T.H. Lam, K.S. Lam, Relationship between the metabolic syndrome and the development of hypertension in the Hong Kong Cardiovascular Risk Factor Prevalence Study-2 (CRISPS2). Am. J. Hypertens. 21(1), 17–22 (2008). CrossRefPubMedGoogle Scholar
  23. 23.
    H. Takase, Y. Dohi, T. Toriyama, T. Okado, S. Tanaka, K. Sato, G. Kimura, Metabolic disorders predict development of hypertension in normotensive Japanese subjects. Hypertens. Res. 31(4), 665–671 (2008). CrossRefPubMedGoogle Scholar
  24. 24.
    K. Lu, R. Ding, L. Wang, S. Wu, J. Chen, D. Hu, Association between prevalence of hypertension and components of metabolic syndrome: the data from Kailuan community. Clin. Exp. Hypertens. 37(4), 303–307 (2015). CrossRefPubMedGoogle Scholar
  25. 25.
    E.S. Ford, Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care 28(7), 1769–1778 (2005)CrossRefPubMedGoogle Scholar
  26. 26.
    K. Dragsbaek, J.S. Neergaard, J.M. Laursen, H.B. Hansen, C. Christiansen, H. Beck-Nielsen, M.A. Karsdal, S. Brix, K. Henriksen, Metabolic syndrome and subsequent risk of type 2 diabetes and cardiovascular disease in elderly women: challenging the current definition. Medicine 95(36), e4806 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    U.J. Jung, M.S. Choi, Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 15(4), 6184–6223 (2014). CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    O. Hamdy, S. Porramatikul, E. Al-Ozairi, Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr. Diabetes Rev. 2(4), 367–373 (2006)CrossRefPubMedGoogle Scholar
  29. 29.
    J.R. Schelling, J.R. Sedor, The metabolic syndrome as a risk factor for chronic kidney disease: more than a fat chance? J. Am. Soc. Nephrol. 15(11), 2773–2774 (2004). CrossRefPubMedGoogle Scholar
  30. 30.
    H.T. Cheng, J.W. Huang, C.K. Chiang, C.J. Yen, K.Y. Hung, K.D. Wu, Metabolic syndrome and insulin resistance as risk factors for development of chronic kidney disease and rapid decline in renal function in elderly. J. Clin. Endocrinol. Metab. 97(4), 1268–1276 (2012). CrossRefPubMedGoogle Scholar
  31. 31.
    B. Spoto, A. Pisano, C. Zoccali, Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol. Renal physiol. (2016).
  32. 32.
    J. Chen, D. Gu, C.S. Chen, X. Wu, L.L. Hamm, P. Muntner, V. Batuman, C.H. Lee, P.K. Whelton, J. He, Association between the metabolic syndrome and chronic kidney disease in Chinese adults. Nephrol. Dial. Transplant. 22(4), 1100–1106 (2007). CrossRefPubMedGoogle Scholar
  33. 33.
    A. Maleki, M. Montazeri, N. Rashidi, M. Montazeri, E. Yousefi-Abdolmaleki, Metabolic syndrome and its components associated with chronic kidney disease. J. Res. Med. Sci. 20(5), 465–469 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    O. Sidorenkov, O. Nilssen, T. Brenn, S. Martiushov, V.L. Arkhipovsky, A.M. Grjibovski, Prevalence of the metabolic syndrome and its components in Northwest Russia: the Arkhangelsk study. BMC Public Health 10, 23 (2010). CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    J.V. van Vliet-Ostaptchouk, M.L. Nuotio, S.N. Slagter, D. Doiron, K. Fischer, L. Foco, A. Gaye, M. Gogele, M. Heier, T. Hiekkalinna, A. Joensuu, C. Newby, C. Pang, E. Partinen, E. Reischl, C. Schwienbacher, M.L. Tammesoo, M.A. Swertz, P. Burton, V. Ferretti, I. Fortier, L. Giepmans, J.R. Harris, H.L. Hillege, J. Holmen, A. Jula, J.E. Kootstra-Ros, K. Kvaloy, T.L. Holmen, S. Mannisto, A. Metspalu, K. Midthjell, M.J. Murtagh, A. Peters, P.P. Pramstaller, T. Saaristo, V. Salomaa, R.P. Stolk, M. Uusitupa, P. van der Harst, M.M. van der Klauw, M. Waldenberger, M. Perola, B.H. Wolffenbuttel, The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr. Disord. 14, 9 (2014). CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Department of Epidemiology and Public HealthUniversity College LondonLondonUK
  2. 2.Primary Care Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeshireUK
  3. 3.Department of Epidemiology and Biostatistics,School of Public HealthPeking UniversityBeijingChina

Personalised recommendations