Skip to main content

Hyperirisinemia is independently associated with subclinical hypothyroidism: correlations with cardiometabolic biomarkers and risk factors

Abstract

Purpose

Irisin, a newly discovered adipo-myokine, is implicated in the modulation of the adipose phenotype, increasing energy expenditure and ameliorating systemic metabolism. Our aim was to investigate circulating irisin in subclinical hypothyroidism (SH) and study its associations with cardiometabolic risk factors.

Methods

In a large case–control study, serum irisin, insulin resistance and lipid parameters, classic adipokines, inflammatory and hepatic biomarkers, and cardiovascular risk factors were determined in 120 consecutive patients with SH and 120 healthy controls matched on age, gender, and date of blood draw. Sixteen patients with SH received L-T4 treatment and, after 6 months, serum irisin and other biomarkers were assessed.

Results

SH cases exhibited significantly higher circulating irisin than controls (p < 0.001). In all participants, irisin was positively associated with TSH, anti-TG, HOMA-IR, C-peptide, lipid and inflammatory biomarkers, leptin, and cardiovascular risk factors, including Framigham score and apolipoprotein B/apolipoprotein A-I. Irisin was negatively correlated with adiponectin, HDL-C, and thyroid hormones. Serum irisin was independently associated with SH, above and beyond body mass index and cardiometabolic factors (p = 0.02). TSH was an independent predictor of circulating irisin (p = 0.003). L-T4 therapy did not reverse considerably the hyperirisinemic status in treated SH patients (p = 0.09).

Conclusions

Irisin may represent an adipo-myokine counterbalancing a potential, gradual deterioration of lipid metabolism and insulin sensitivity in SH as well as reflecting a protective compensatory mechanism against oxidative muscle and thyroid cell stress. More mechanistic and prospective studies shedding light on the pathogenetic role of irisin in SH are needed to confirm and extend these data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

ALT:

Alanine aminotransferase

anti-TG:

Anti-thyroglobulin antibodies

anti-TPO:

Anti-peroxidase antibodies

ApoA-I:

Apolipoprotein A-I

ApoB:

Apolipoprotein B

AST:

Aspartate aminotransferase

BAT:

Brown adipose tissue

BMI:

Body mass index

BP:

Blood pressure

γ-GT:

Gamma glutamyltransferase

CI:

Confidence interval

CPK:

Creatine phosphokinase

CVD:

Cardiovascular disease

DBP:

Diastolic blood pressure

DM:

Diabetes mellitus

ELISA:

Enzyme-linked immunosorbent assay

FMR:

Female to male ratio

FNDC5:

Fibronectin type III domain containing protein 5

HbA1c:

Glycated hemoglobin A1

HDL-C:

High-density lipoprotein cholesterol

HOMA:

Homeostasis model assessment score of insulin resistance

HPT:

Hypothalamic-pituitary-thyroid axis

hsCRP:

High sensitive C-reactive protein

HT:

Hashimoto’s thyroiditis

L-T4:

Levothyroxine

LDL-C:

Low-density lipoprotein cholesterol

Lp(a):

Lipoprotein a

MAPK:

Mitogen-activated protein kinase

OR:

Odds ratio

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator-1α

SBP:

Systolic blood pressure

SD:

Standard deviation

SH:

Subclinical hypothyroidism

T3:

Tri-iodothyronine

T4:

Thyroxine

TG:

Thyroglobulin

TPO:

Thyroid peroxidase

TSH:

Thyroid stimulating hormone

UCP1:

Uncoupling protein 1

US:

Ultrasonography

WAT:

White adipose tissue

WHR:

Waist-to-hip ratio

References

  1. R.P. Peeters, Subclinical hypothyroidism. N. Engl. J. Med. 377(14), 1404 (2017). https://doi.org/10.1056/NEJMc1709853

    Article  PubMed  Google Scholar 

  2. A.P. Delitala, G. Fanciulli, M. Maioli, G. Delitala, Subclinical hypothyroidism, lipid metabolism and cardiovascular disease. Eur. J. Intern. Med. 38, 17–24 (2017). https://doi.org/10.1016/j.ejim.2016.12.015

    Article  PubMed  CAS  Google Scholar 

  3. A.E. Hak, H.A. Pols, T.J. Visser, H.A. Drexhage, A. Hofman, J.C. Witteman, Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann. Intern. Med. 132(4), 270–278 (2000)

    Article  PubMed  CAS  Google Scholar 

  4. D. Liu, F. Jiang, Z. Shan, B. Wang, J. Wang, Y. Lai, Y. Chen, M. Li, H. Liu, C. Li, H. Xue, N. Li, J. Yu, L. Shi, X. Bai, X. Hou, L. Zhu, L. Lu, S. Wang, Q. Xing, W. Teng, A cross-sectional survey of relationship between serum TSH level and blood pressure. J. Hum. Hypertens. 24(2), 134–138 (2010). https://doi.org/10.1038/jhh.2009.44

    Article  PubMed  CAS  Google Scholar 

  5. N. Rodondi, W.P. den Elzen, D.C. Bauer, A.R. Cappola, S. Razvi, J.P. Walsh, B.O. Asvold, G. Iervasi, M. Imaizumi, T.H. Collet, A. Bremner, P. Maisonneuve, J.A. Sgarbi, K.T. Khaw, M.P. Vanderpump, A.B. Newman, J. Cornuz, J.A. Franklyn, R.G. Westendorp, E. Vittinghoff, J. Gussekloo, Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 304(12), 1365–1374 (2010). https://doi.org/10.1001/jama.2010.1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. J.Y. Huh, G. Panagiotou, V. Mougios, M. Brinkoetter, M.T. Vamvini, B.E. Schneider, C.S. Mantzoros, FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61(12), 1725–1738 (2012). https://doi.org/10.1016/j.metabol.2012.09.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. G. Panagiotou, K. Pazaitou-Panayiotou, S.A. Paschou, D. Komninou, N. Kalogeris, A. Vryonidou, C.S. Mantzoros, Changes in thyroid hormone levels within the normal and/or subclinical hyper- or hypothyroid range do not affect circulating irisin levels in humans. Thyroid 26(8), 1039–1045 (2016). https://doi.org/10.1089/thy.2016.0098

    Article  PubMed  CAS  Google Scholar 

  8. P. Bostrom, J. Wu, M.P. Jedrychowski, A. Korde, L. Ye, J.C. Lo, K.A. Rasbach, E.A. Bostrom, J.H. Choi, J.Z. Long, S. Kajimura, M.C. Zingaretti, B.F. Vind, H. Tu, S. Cinti, K. Hojlund, S.P. Gygi, B.M. Spiegelman, A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382), 463–468 (2012). https://doi.org/10.1038/nature10777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. K. Panati, Y. Suneetha, V.R. Narala, Irisin/FNDC5—an updated review. Eur. Rev. Med. Pharmacol. Sci. 20(4), 689–697 (2016)

    PubMed  CAS  Google Scholar 

  10. K.I. Stanford, R.J. Middelbeek, K.L. Townsend, D. An, E.B. Nygaard, K.M. Hitchcox, K.R. Markan, K. Nakano, M.F. Hirshman, Y.H. Tseng, L.J. Goodyear, Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123(1), 215–223 (2013). https://doi.org/10.1172/jci62308

    Article  PubMed  CAS  Google Scholar 

  11. J.A. Timmons, B.K. Pedersen, The importance of brown adipose tissue. N. Engl. J. Med. 361(4), 415–416 (2009). https://doi.org/10.1056/NEJMc091009. author reply 418-421

    Article  PubMed  CAS  Google Scholar 

  12. T. Hofmann, U. Elbelt, A. Stengel, Irisin as a muscle-derived hormone stimulating thermogenesis—a critical update. Peptides 54, 89–100 (2014). https://doi.org/10.1016/j.peptides.2014.01.016

    Article  PubMed  CAS  Google Scholar 

  13. K.N. Aronis, M. Moreno, S.A. Polyzos, J.M. Moreno-Navarrete, W. Ricart, E. Delgado, J. de la Hera, A. Sahin-Efe, J.P. Chamberland, R. Berman, A. Spiro 3rd, P. Vokonas, J.M. Fernandez-Real, C.S. Mantzoros, Circulating irisin levels and coronary heart disease: association with future acute coronary syndrome and major adverse cardiovascular events. Int. J. Obes. 39(1), 156–161 (2015). https://doi.org/10.1038/ijo.2014.101

    Article  CAS  Google Scholar 

  14. K.H. Park, L. Zaichenko, M. Brinkoetter, B. Thakkar, A. Sahin-Efe, K.E. Joung, M.A. Tsoukas, E.V. Geladari, J.Y. Huh, F. Dincer, C.R. Davis, J.A. Crowell, C.S. Mantzoros, Circulating irisin in relation to insulin resistance and the metabolic syndrome. J. Clin. Endocrinol. Metab. 98(12), 4899–4907 (2013). https://doi.org/10.1210/jc.2013-2373

    Article  PubMed  CAS  Google Scholar 

  15. N. Perakakis, G.A. Triantafyllou, J.M. Fernandez-Real, J.Y. Huh, K.H. Park, J. Seufert, C.S. Mantzoros, Physiology and role of irisin in glucose homeostasis. Nat. Rev. Endocrinol. 13(6), 324–337 (2017). https://doi.org/10.1038/nrendo.2016.221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. S.A. Polyzos, A.D. Anastasilakis, Z.A. Efstathiadou, P. Makras, N. Perakakis, J. Kountouras, C.S. Mantzoros, Irisin in metabolic diseases. Endocrine (2017). https://doi.org/10.1007/s12020-017-1476-1

  17. I. Ates, M. Altay, C. Topcuoglu, F.M. Yilmaz, Circulating levels of irisin is elevated in hypothyroidism, a case-control study. Arch. Endocrinol. Metab. 60(2), 95–100 (2016). https://doi.org/10.1590/2359-3997000000077

    Article  PubMed  Google Scholar 

  18. E. Atici, R. Mogulkoc, A.K. Baltaci, E. Menevse, Both hypothyroidism and hyperthyroidism increase plasma irisin levels in rats. Horm. Mol. Biol. Clin. Investig. (2017). https://doi.org/10.1515/hmbci-2017-0054

  19. M. Ruchala, A. Zybek, E. Szczepanek-Parulska, Serum irisin levels and thyroid function—newly discovered association. Peptides 60, 51–55 (2014). https://doi.org/10.1016/j.peptides.2014.07.021

    Article  PubMed  CAS  Google Scholar 

  20. D.M. Samy, C.A. Ismail, R.A. Nassra, Circulating irisin concentrations in rat models of thyroid dysfunction—effect of exercise. Metabolism 64(7), 804–813 (2015). https://doi.org/10.1016/j.metabol.2015.01.001

    Article  PubMed  CAS  Google Scholar 

  21. A. Zybek-Kocik, N. Sawicka-Gutaj, E. Szczepanek-Parulska, M. Andrusiewicz, J. Waligorska-Stachura, P. Bialas, T. Krauze, P. Guzik, J. Skrobisz, M. Ruchala, The association between irisin and muscle metabolism in different thyroid disorders. Clin. Endocrinol. (2017). https://doi.org/10.1111/cen.13527

  22. A. Zybek-Kocik, N. Sawicka-Gutaj, E. Wrotkowska, J. Sowinski, M. Ruchala, Time-dependent irisin concentration changes in patients affected by overt hypothyroidism. Endokrynol. Pol. 67(5), 476–480 (2016). https://doi.org/10.5603/EP.a2016.0030

    Article  PubMed  CAS  Google Scholar 

  23. M.M. Yalcin, M. Akturk, Y. Tohma, E.T. Cerit, A.E. Altinova, E. Arslan, I. Yetkin, F.B. Toruner, Irisin and myostatin levels in patients with Graves’ disease. Arch. Med. Res. 47(6), 471–475 (2016). https://doi.org/10.1016/j.arcmed.2016.11.002

    Article  PubMed  CAS  Google Scholar 

  24. P. Deurenberg, J.A. Weststrate, J.C. Seidell, Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br. J. Nutr. 65(2), 105–114 (1991)

    Article  PubMed  CAS  Google Scholar 

  25. R.B. D’Agostino Sr., R.S. Vasan, M.J. Pencina, P.A. Wolf, M. Cobain, J.M. Massaro, W.B. Kannel, General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6), 743–753 (2008). https://doi.org/10.1161/circulationaha.107.699579

    Article  PubMed  Google Scholar 

  26. I. Karampela, E. Kandri, G. Antonakos, E. Vogiatzakis, G.S. Christodoulatos, A. Nikolaidou, G. Dimopoulos, A. Armaganidis, M. Dalamaga, Kinetics of circulating fetuin-A may predict mortality independently from adiponectin, high molecular weight adiponectin and prognostic factors in critically ill patients with sepsis: a prospective study. J. Crit. Care 41, 78–85 (2017). https://doi.org/10.1016/j.jcrc.2017.05.004

    Article  PubMed  CAS  Google Scholar 

  27. M. Dalamaga, K. Karmaniolas, E. Papadavid, N. Pelekanos, G. Sotiropoulos, A. Lekka, Elevated serum visfatin/nicotinamide phosphoribosyl-transferase levels are associated with risk of postmenopausal breast cancer independently from adiponectin, leptin, and anthropometric and metabolic parameters. Menopause 18(11), 1198–1204 (2011). https://doi.org/10.1097/gme.0b013e31821e21f5

    Article  PubMed  Google Scholar 

  28. M. Dalamaga, G. Sotiropoulos, K. Karmaniolas, N. Pelekanos, E. Papadavid, A. Lekka, Serum resistin: a biomarker of breast cancer in postmenopausal women? Association with clinicopathological characteristics, tumor markers, inflammatory and metabolic parameters. Clin. Biochem. 46(7–8), 584–590 (2013). https://doi.org/10.1016/j.clinbiochem.2013.01.001

    Article  PubMed  CAS  Google Scholar 

  29. M. Dalamaga, K. Karmaniolas, A. Nikolaidou, J. Chamberland, A. Hsi, A. Dionyssiou-Asteriou, C.S. Mantzoros, Adiponectin and resistin are associated with risk for myelodysplastic syndrome, independently from the insulin-like growth factor-I (IGF-I) system. Eur. J. Cancer 44(12), 1744–1753 (2008). https://doi.org/10.1016/j.ejca.2008.04.015

    Article  PubMed  CAS  Google Scholar 

  30. S.A. Polyzos, H. Mathew, C.S. Mantzoros, Irisin: a true, circulating hormone. Metabolism 64(12), 1611–1618 (2015). https://doi.org/10.1016/j.metabol.2015.09.001

    Article  PubMed  CAS  Google Scholar 

  31. F. Cook, Advanced Methods in Clinical Epidemiology. (Harvard School of Public Health, Boston, MA, 2000)

  32. J.V. Hennessey, R. Espaillat, Subclinical hypothyroidism: a historical view and shifting prevalence. Int. J. Clin. Pract. 69(7), 771–782 (2015). https://doi.org/10.1111/ijcp.12619

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. I. Legakis, M. Manousaki, S. Detsi, D. Nikita, Thyroid function and prevalence of anti-thyroperoxidase (TPO) and anti-thyroglobulin (Tg) antibodies in outpatients hospital setting in an area with sufficient iodine intake: influences of age and sex. Acta Med. Iran. 51(1), 25–34 (2013)

    PubMed  CAS  Google Scholar 

  34. A.C. Bianco, E.A. McAninch, The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol. 1(3), 250–258 (2013). https://doi.org/10.1016/s2213-8587(13)70069-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. M.S. Draman, M. Stechman, D. Scott-Coombes, C.M. Dayan, D.A. Rees, M. Ludgate, L. Zhang, The role of thyrotropin receptor activation in adipogenesis and modulation of fat phenotype. Front. Endocrinol. 8, 83 (2017). https://doi.org/10.3389/fendo.2017.00083

    Article  Google Scholar 

  36. C. Lapa, Y. Maya, M. Wagner, P. Arias-Loza, R.A. Werner, K. Herrmann, T. Higuchi, Activation of brown adipose tissue in hypothyroidism. Ann. Med. 47(7), 538–545 (2015). https://doi.org/10.3109/07853890.2015.1085126

    Article  PubMed  CAS  Google Scholar 

  37. S. Ellefsen, O. Vikmoen, G. Slettalokken, J.E. Whist, H. Nygaard, I. Hollan, I. Rauk, G. Vegge, T.A. Strand, T. Raastad, B.R. Ronnestad, Irisin and FNDC5: effects of 12-week strength training, and relations to muscle phenotype and body mass composition in untrained women. Eur. J. Appl. Physiol. 114(9), 1875–1888 (2014). https://doi.org/10.1007/s00421-014-2922-x

    Article  PubMed  CAS  Google Scholar 

  38. H.S. Moon, M. Dalamaga, S.Y. Kim, S.A. Polyzos, O.P. Hamnvik, F. Magkos, J. Paruthi, C.S. Mantzoros, Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr. Rev. 34(3), 377–412 (2013). https://doi.org/10.1210/er.2012-1053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. M. Dalamaga, S.H. Chou, K. Shields, P. Papageorgiou, S.A. Polyzos, C.S. Mantzoros, Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 18(1), 29–42 (2013). https://doi.org/10.1016/j.cmet.2013.05.010

    Article  PubMed  CAS  Google Scholar 

  40. M.D. Roberts, D.S. Bayless, J.M. Company, N.T. Jenkins, J. Padilla, T.E. Childs, J.S. Martin, V.J. Dalbo, F.W. Booth, R.S. Rector, M.H. Laughlin, Elevated skeletal muscle irisin precursor FNDC5 mRNA in obese OLETF rats. Metabolism 62(8), 1052–1056 (2013). https://doi.org/10.1016/j.metabol.2013.02.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. S. Qiu, X. Cai, H. Yin, M. Zugel, Z. Sun, J.M. Steinacker, U. Schumann, Association between circulating irisin and insulin resistance in non-diabetic adults: a meta-analysis. Metabolism 65(6), 825–834 (2016). https://doi.org/10.1016/j.metabol.2016.02.006

    Article  PubMed  CAS  Google Scholar 

  42. F. Sanchis-Gomar, C. Perez-Quilis, The p38-PGC-1alpha-irisin-betatrophin axis: exploring new pathways in insulin resistance. Adipocyte 3(1), 67–68 (2014). https://doi.org/10.4161/adip.27370

    Article  PubMed  CAS  Google Scholar 

  43. J.Y. Huh, C.S. Mantzoros, Irisin physiology, oxidative stress, and thyroid dysfunction: what next? Metabolism 64(7), 765–767 (2015). https://doi.org/10.1016/j.metabol.2015.02.009

    Article  PubMed  CAS  Google Scholar 

  44. I. Gouni-Berthold, H.K. Berthold, J.Y. Huh, R. Berman, N. Spenrath, W. Krone, C.S. Mantzoros, Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PLoS One 8(9), e72858 (2013). https://doi.org/10.1371/journal.pone.0072858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. I.M. Abreu, E. Lau, B. de Sousa Pinto, D. Carvalho, Subclinical hypothyroidism: to treat or not to treat, that is the question! A systematic review with meta-analysis on lipid profile. Endocr. Connect. 6(3), 188–199 (2017). https://doi.org/10.1530/ec-17-0028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Dalamaga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Theodora Stratigou and Maria Dalamaga.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stratigou, T., Dalamaga, M., Antonakos, G. et al. Hyperirisinemia is independently associated with subclinical hypothyroidism: correlations with cardiometabolic biomarkers and risk factors. Endocrine 61, 83–93 (2018). https://doi.org/10.1007/s12020-018-1550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1550-3

Keywords

  • Adipokine
  • Cardiovascular
  • Irisin
  • Myokine
  • Subclinical hypothyroidism
  • Thyroid