Abstract
Purpose
Irisin, a newly discovered adipo-myokine, is implicated in the modulation of the adipose phenotype, increasing energy expenditure and ameliorating systemic metabolism. Our aim was to investigate circulating irisin in subclinical hypothyroidism (SH) and study its associations with cardiometabolic risk factors.
Methods
In a large case–control study, serum irisin, insulin resistance and lipid parameters, classic adipokines, inflammatory and hepatic biomarkers, and cardiovascular risk factors were determined in 120 consecutive patients with SH and 120 healthy controls matched on age, gender, and date of blood draw. Sixteen patients with SH received L-T4 treatment and, after 6 months, serum irisin and other biomarkers were assessed.
Results
SH cases exhibited significantly higher circulating irisin than controls (p < 0.001). In all participants, irisin was positively associated with TSH, anti-TG, HOMA-IR, C-peptide, lipid and inflammatory biomarkers, leptin, and cardiovascular risk factors, including Framigham score and apolipoprotein B/apolipoprotein A-I. Irisin was negatively correlated with adiponectin, HDL-C, and thyroid hormones. Serum irisin was independently associated with SH, above and beyond body mass index and cardiometabolic factors (p = 0.02). TSH was an independent predictor of circulating irisin (p = 0.003). L-T4 therapy did not reverse considerably the hyperirisinemic status in treated SH patients (p = 0.09).
Conclusions
Irisin may represent an adipo-myokine counterbalancing a potential, gradual deterioration of lipid metabolism and insulin sensitivity in SH as well as reflecting a protective compensatory mechanism against oxidative muscle and thyroid cell stress. More mechanistic and prospective studies shedding light on the pathogenetic role of irisin in SH are needed to confirm and extend these data.
This is a preview of subscription content, access via your institution.


Abbreviations
- ALT:
-
Alanine aminotransferase
- anti-TG:
-
Anti-thyroglobulin antibodies
- anti-TPO:
-
Anti-peroxidase antibodies
- ApoA-I:
-
Apolipoprotein A-I
- ApoB:
-
Apolipoprotein B
- AST:
-
Aspartate aminotransferase
- BAT:
-
Brown adipose tissue
- BMI:
-
Body mass index
- BP:
-
Blood pressure
- γ-GT:
-
Gamma glutamyltransferase
- CI:
-
Confidence interval
- CPK:
-
Creatine phosphokinase
- CVD:
-
Cardiovascular disease
- DBP:
-
Diastolic blood pressure
- DM:
-
Diabetes mellitus
- ELISA:
-
Enzyme-linked immunosorbent assay
- FMR:
-
Female to male ratio
- FNDC5:
-
Fibronectin type III domain containing protein 5
- HbA1c:
-
Glycated hemoglobin A1
- HDL-C:
-
High-density lipoprotein cholesterol
- HOMA:
-
Homeostasis model assessment score of insulin resistance
- HPT:
-
Hypothalamic-pituitary-thyroid axis
- hsCRP:
-
High sensitive C-reactive protein
- HT:
-
Hashimoto’s thyroiditis
- L-T4:
-
Levothyroxine
- LDL-C:
-
Low-density lipoprotein cholesterol
- Lp(a):
-
Lipoprotein a
- MAPK:
-
Mitogen-activated protein kinase
- OR:
-
Odds ratio
- PGC-1α:
-
Peroxisome proliferator-activated receptor-γ coactivator-1α
- SBP:
-
Systolic blood pressure
- SD:
-
Standard deviation
- SH:
-
Subclinical hypothyroidism
- T3:
-
Tri-iodothyronine
- T4:
-
Thyroxine
- TG:
-
Thyroglobulin
- TPO:
-
Thyroid peroxidase
- TSH:
-
Thyroid stimulating hormone
- UCP1:
-
Uncoupling protein 1
- US:
-
Ultrasonography
- WAT:
-
White adipose tissue
- WHR:
-
Waist-to-hip ratio
References
R.P. Peeters, Subclinical hypothyroidism. N. Engl. J. Med. 377(14), 1404 (2017). https://doi.org/10.1056/NEJMc1709853
A.P. Delitala, G. Fanciulli, M. Maioli, G. Delitala, Subclinical hypothyroidism, lipid metabolism and cardiovascular disease. Eur. J. Intern. Med. 38, 17–24 (2017). https://doi.org/10.1016/j.ejim.2016.12.015
A.E. Hak, H.A. Pols, T.J. Visser, H.A. Drexhage, A. Hofman, J.C. Witteman, Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann. Intern. Med. 132(4), 270–278 (2000)
D. Liu, F. Jiang, Z. Shan, B. Wang, J. Wang, Y. Lai, Y. Chen, M. Li, H. Liu, C. Li, H. Xue, N. Li, J. Yu, L. Shi, X. Bai, X. Hou, L. Zhu, L. Lu, S. Wang, Q. Xing, W. Teng, A cross-sectional survey of relationship between serum TSH level and blood pressure. J. Hum. Hypertens. 24(2), 134–138 (2010). https://doi.org/10.1038/jhh.2009.44
N. Rodondi, W.P. den Elzen, D.C. Bauer, A.R. Cappola, S. Razvi, J.P. Walsh, B.O. Asvold, G. Iervasi, M. Imaizumi, T.H. Collet, A. Bremner, P. Maisonneuve, J.A. Sgarbi, K.T. Khaw, M.P. Vanderpump, A.B. Newman, J. Cornuz, J.A. Franklyn, R.G. Westendorp, E. Vittinghoff, J. Gussekloo, Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 304(12), 1365–1374 (2010). https://doi.org/10.1001/jama.2010.1361
J.Y. Huh, G. Panagiotou, V. Mougios, M. Brinkoetter, M.T. Vamvini, B.E. Schneider, C.S. Mantzoros, FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61(12), 1725–1738 (2012). https://doi.org/10.1016/j.metabol.2012.09.002
G. Panagiotou, K. Pazaitou-Panayiotou, S.A. Paschou, D. Komninou, N. Kalogeris, A. Vryonidou, C.S. Mantzoros, Changes in thyroid hormone levels within the normal and/or subclinical hyper- or hypothyroid range do not affect circulating irisin levels in humans. Thyroid 26(8), 1039–1045 (2016). https://doi.org/10.1089/thy.2016.0098
P. Bostrom, J. Wu, M.P. Jedrychowski, A. Korde, L. Ye, J.C. Lo, K.A. Rasbach, E.A. Bostrom, J.H. Choi, J.Z. Long, S. Kajimura, M.C. Zingaretti, B.F. Vind, H. Tu, S. Cinti, K. Hojlund, S.P. Gygi, B.M. Spiegelman, A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382), 463–468 (2012). https://doi.org/10.1038/nature10777
K. Panati, Y. Suneetha, V.R. Narala, Irisin/FNDC5—an updated review. Eur. Rev. Med. Pharmacol. Sci. 20(4), 689–697 (2016)
K.I. Stanford, R.J. Middelbeek, K.L. Townsend, D. An, E.B. Nygaard, K.M. Hitchcox, K.R. Markan, K. Nakano, M.F. Hirshman, Y.H. Tseng, L.J. Goodyear, Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123(1), 215–223 (2013). https://doi.org/10.1172/jci62308
J.A. Timmons, B.K. Pedersen, The importance of brown adipose tissue. N. Engl. J. Med. 361(4), 415–416 (2009). https://doi.org/10.1056/NEJMc091009. author reply 418-421
T. Hofmann, U. Elbelt, A. Stengel, Irisin as a muscle-derived hormone stimulating thermogenesis—a critical update. Peptides 54, 89–100 (2014). https://doi.org/10.1016/j.peptides.2014.01.016
K.N. Aronis, M. Moreno, S.A. Polyzos, J.M. Moreno-Navarrete, W. Ricart, E. Delgado, J. de la Hera, A. Sahin-Efe, J.P. Chamberland, R. Berman, A. Spiro 3rd, P. Vokonas, J.M. Fernandez-Real, C.S. Mantzoros, Circulating irisin levels and coronary heart disease: association with future acute coronary syndrome and major adverse cardiovascular events. Int. J. Obes. 39(1), 156–161 (2015). https://doi.org/10.1038/ijo.2014.101
K.H. Park, L. Zaichenko, M. Brinkoetter, B. Thakkar, A. Sahin-Efe, K.E. Joung, M.A. Tsoukas, E.V. Geladari, J.Y. Huh, F. Dincer, C.R. Davis, J.A. Crowell, C.S. Mantzoros, Circulating irisin in relation to insulin resistance and the metabolic syndrome. J. Clin. Endocrinol. Metab. 98(12), 4899–4907 (2013). https://doi.org/10.1210/jc.2013-2373
N. Perakakis, G.A. Triantafyllou, J.M. Fernandez-Real, J.Y. Huh, K.H. Park, J. Seufert, C.S. Mantzoros, Physiology and role of irisin in glucose homeostasis. Nat. Rev. Endocrinol. 13(6), 324–337 (2017). https://doi.org/10.1038/nrendo.2016.221
S.A. Polyzos, A.D. Anastasilakis, Z.A. Efstathiadou, P. Makras, N. Perakakis, J. Kountouras, C.S. Mantzoros, Irisin in metabolic diseases. Endocrine (2017). https://doi.org/10.1007/s12020-017-1476-1
I. Ates, M. Altay, C. Topcuoglu, F.M. Yilmaz, Circulating levels of irisin is elevated in hypothyroidism, a case-control study. Arch. Endocrinol. Metab. 60(2), 95–100 (2016). https://doi.org/10.1590/2359-3997000000077
E. Atici, R. Mogulkoc, A.K. Baltaci, E. Menevse, Both hypothyroidism and hyperthyroidism increase plasma irisin levels in rats. Horm. Mol. Biol. Clin. Investig. (2017). https://doi.org/10.1515/hmbci-2017-0054
M. Ruchala, A. Zybek, E. Szczepanek-Parulska, Serum irisin levels and thyroid function—newly discovered association. Peptides 60, 51–55 (2014). https://doi.org/10.1016/j.peptides.2014.07.021
D.M. Samy, C.A. Ismail, R.A. Nassra, Circulating irisin concentrations in rat models of thyroid dysfunction—effect of exercise. Metabolism 64(7), 804–813 (2015). https://doi.org/10.1016/j.metabol.2015.01.001
A. Zybek-Kocik, N. Sawicka-Gutaj, E. Szczepanek-Parulska, M. Andrusiewicz, J. Waligorska-Stachura, P. Bialas, T. Krauze, P. Guzik, J. Skrobisz, M. Ruchala, The association between irisin and muscle metabolism in different thyroid disorders. Clin. Endocrinol. (2017). https://doi.org/10.1111/cen.13527
A. Zybek-Kocik, N. Sawicka-Gutaj, E. Wrotkowska, J. Sowinski, M. Ruchala, Time-dependent irisin concentration changes in patients affected by overt hypothyroidism. Endokrynol. Pol. 67(5), 476–480 (2016). https://doi.org/10.5603/EP.a2016.0030
M.M. Yalcin, M. Akturk, Y. Tohma, E.T. Cerit, A.E. Altinova, E. Arslan, I. Yetkin, F.B. Toruner, Irisin and myostatin levels in patients with Graves’ disease. Arch. Med. Res. 47(6), 471–475 (2016). https://doi.org/10.1016/j.arcmed.2016.11.002
P. Deurenberg, J.A. Weststrate, J.C. Seidell, Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br. J. Nutr. 65(2), 105–114 (1991)
R.B. D’Agostino Sr., R.S. Vasan, M.J. Pencina, P.A. Wolf, M. Cobain, J.M. Massaro, W.B. Kannel, General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6), 743–753 (2008). https://doi.org/10.1161/circulationaha.107.699579
I. Karampela, E. Kandri, G. Antonakos, E. Vogiatzakis, G.S. Christodoulatos, A. Nikolaidou, G. Dimopoulos, A. Armaganidis, M. Dalamaga, Kinetics of circulating fetuin-A may predict mortality independently from adiponectin, high molecular weight adiponectin and prognostic factors in critically ill patients with sepsis: a prospective study. J. Crit. Care 41, 78–85 (2017). https://doi.org/10.1016/j.jcrc.2017.05.004
M. Dalamaga, K. Karmaniolas, E. Papadavid, N. Pelekanos, G. Sotiropoulos, A. Lekka, Elevated serum visfatin/nicotinamide phosphoribosyl-transferase levels are associated with risk of postmenopausal breast cancer independently from adiponectin, leptin, and anthropometric and metabolic parameters. Menopause 18(11), 1198–1204 (2011). https://doi.org/10.1097/gme.0b013e31821e21f5
M. Dalamaga, G. Sotiropoulos, K. Karmaniolas, N. Pelekanos, E. Papadavid, A. Lekka, Serum resistin: a biomarker of breast cancer in postmenopausal women? Association with clinicopathological characteristics, tumor markers, inflammatory and metabolic parameters. Clin. Biochem. 46(7–8), 584–590 (2013). https://doi.org/10.1016/j.clinbiochem.2013.01.001
M. Dalamaga, K. Karmaniolas, A. Nikolaidou, J. Chamberland, A. Hsi, A. Dionyssiou-Asteriou, C.S. Mantzoros, Adiponectin and resistin are associated with risk for myelodysplastic syndrome, independently from the insulin-like growth factor-I (IGF-I) system. Eur. J. Cancer 44(12), 1744–1753 (2008). https://doi.org/10.1016/j.ejca.2008.04.015
S.A. Polyzos, H. Mathew, C.S. Mantzoros, Irisin: a true, circulating hormone. Metabolism 64(12), 1611–1618 (2015). https://doi.org/10.1016/j.metabol.2015.09.001
F. Cook, Advanced Methods in Clinical Epidemiology. (Harvard School of Public Health, Boston, MA, 2000)
J.V. Hennessey, R. Espaillat, Subclinical hypothyroidism: a historical view and shifting prevalence. Int. J. Clin. Pract. 69(7), 771–782 (2015). https://doi.org/10.1111/ijcp.12619
I. Legakis, M. Manousaki, S. Detsi, D. Nikita, Thyroid function and prevalence of anti-thyroperoxidase (TPO) and anti-thyroglobulin (Tg) antibodies in outpatients hospital setting in an area with sufficient iodine intake: influences of age and sex. Acta Med. Iran. 51(1), 25–34 (2013)
A.C. Bianco, E.A. McAninch, The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol. 1(3), 250–258 (2013). https://doi.org/10.1016/s2213-8587(13)70069-x
M.S. Draman, M. Stechman, D. Scott-Coombes, C.M. Dayan, D.A. Rees, M. Ludgate, L. Zhang, The role of thyrotropin receptor activation in adipogenesis and modulation of fat phenotype. Front. Endocrinol. 8, 83 (2017). https://doi.org/10.3389/fendo.2017.00083
C. Lapa, Y. Maya, M. Wagner, P. Arias-Loza, R.A. Werner, K. Herrmann, T. Higuchi, Activation of brown adipose tissue in hypothyroidism. Ann. Med. 47(7), 538–545 (2015). https://doi.org/10.3109/07853890.2015.1085126
S. Ellefsen, O. Vikmoen, G. Slettalokken, J.E. Whist, H. Nygaard, I. Hollan, I. Rauk, G. Vegge, T.A. Strand, T. Raastad, B.R. Ronnestad, Irisin and FNDC5: effects of 12-week strength training, and relations to muscle phenotype and body mass composition in untrained women. Eur. J. Appl. Physiol. 114(9), 1875–1888 (2014). https://doi.org/10.1007/s00421-014-2922-x
H.S. Moon, M. Dalamaga, S.Y. Kim, S.A. Polyzos, O.P. Hamnvik, F. Magkos, J. Paruthi, C.S. Mantzoros, Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr. Rev. 34(3), 377–412 (2013). https://doi.org/10.1210/er.2012-1053
M. Dalamaga, S.H. Chou, K. Shields, P. Papageorgiou, S.A. Polyzos, C.S. Mantzoros, Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 18(1), 29–42 (2013). https://doi.org/10.1016/j.cmet.2013.05.010
M.D. Roberts, D.S. Bayless, J.M. Company, N.T. Jenkins, J. Padilla, T.E. Childs, J.S. Martin, V.J. Dalbo, F.W. Booth, R.S. Rector, M.H. Laughlin, Elevated skeletal muscle irisin precursor FNDC5 mRNA in obese OLETF rats. Metabolism 62(8), 1052–1056 (2013). https://doi.org/10.1016/j.metabol.2013.02.002
S. Qiu, X. Cai, H. Yin, M. Zugel, Z. Sun, J.M. Steinacker, U. Schumann, Association between circulating irisin and insulin resistance in non-diabetic adults: a meta-analysis. Metabolism 65(6), 825–834 (2016). https://doi.org/10.1016/j.metabol.2016.02.006
F. Sanchis-Gomar, C. Perez-Quilis, The p38-PGC-1alpha-irisin-betatrophin axis: exploring new pathways in insulin resistance. Adipocyte 3(1), 67–68 (2014). https://doi.org/10.4161/adip.27370
J.Y. Huh, C.S. Mantzoros, Irisin physiology, oxidative stress, and thyroid dysfunction: what next? Metabolism 64(7), 765–767 (2015). https://doi.org/10.1016/j.metabol.2015.02.009
I. Gouni-Berthold, H.K. Berthold, J.Y. Huh, R. Berman, N. Spenrath, W. Krone, C.S. Mantzoros, Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PLoS One 8(9), e72858 (2013). https://doi.org/10.1371/journal.pone.0072858
I.M. Abreu, E. Lau, B. de Sousa Pinto, D. Carvalho, Subclinical hypothyroidism: to treat or not to treat, that is the question! A systematic review with meta-analysis on lipid profile. Endocr. Connect. 6(3), 188–199 (2017). https://doi.org/10.1530/ec-17-0028
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
These authors contributed equally: Theodora Stratigou and Maria Dalamaga.
Rights and permissions
About this article
Cite this article
Stratigou, T., Dalamaga, M., Antonakos, G. et al. Hyperirisinemia is independently associated with subclinical hypothyroidism: correlations with cardiometabolic biomarkers and risk factors. Endocrine 61, 83–93 (2018). https://doi.org/10.1007/s12020-018-1550-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12020-018-1550-3
Keywords
- Adipokine
- Cardiovascular
- Irisin
- Myokine
- Subclinical hypothyroidism
- Thyroid