Skip to main content
Log in

Relaxin activates AMPK-AKT signaling and increases glucose uptake by cultured cardiomyocytes

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Many evidences show that the hormone relaxin plays a pivotal role in the physiology and pathology of the cardiovascular system. This pleiotropic hormone exerts regulatory functions through specific receptors in cardiovascular tissues: in experimental animal models it was shown to induce coronary vasodilation, prevent cardiac damage induced by ischemia/reperfusion and revert cardiac hypertrophy and fibrosis. A tight relationship between this hormone and important metabolic pathways has been suggested, but it is at present unknown if relaxin could regulate cardiac metabolism. Our aim was to study the possible effects of relaxin on cardiomyocyte metabolism.

Methods

Neonatal rat cardiomyocytes were treated with relaxin and (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays (MTT) were performed to assess metabolic activity; while 2-deoxy-D-[3H] glucose and BODIPY-labelled fatty acid incorporations were analyzed to measure glucose and fatty acid uptakes, and western blot was utilized to study the intracellular signaling pathways activated by the hormone.

Results

We observed that relaxin at 10 ng/ml was able to increase the level of metabolic activity of cultured neonatal rat cardiomyocytes; the rate of 2-deoxy-D-[3H]glucose incorporation demonstrated that relaxin also induced an increase in glucose uptake. First evidence is also offered that relaxin can activate the master energy sensor and regulator AMPK in cardiomyocytes. Moreover, the treatment of cardiomyocytes with relaxin also induced dose-dependent increases in ERK1/2, AKT, and AS160 phosphorylation. That raise in AS160 phosphorylation induced by relaxin was prevented by the pretreatment with AMPK and AKT pathways inhibitors, indicating that both molecules play important roles in the relaxin effects reported.

Conclusion

Relaxin can regulate cardiomyocyte metabolism and activate AMPK, the central sensor of energy status that maintains cellular energy homeostasis, and also ERK and AKT, two molecular sensing nodes that coordinate dynamic responses of the cell’s metabolic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5

Similar content being viewed by others

References

  1. R.A. Bathgate, M.L. Halls, E.T. van der Westhuizen, G.E. Callander, M. Kocan, R.J. Summers, Relaxin family peptides and their receptors. Physiol. Rev. 93, 405–480 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. D. Bani, A. Pini, S.K. Yue, Relaxin, insulin and diabetes: an intriguing connection. Curr. Diabetes Rev. 8, 329–335 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. J.R. Teerlink, G. Cotter, B.A. Davison, G.M. Felker, G. Filippatos, B.H. Greenberg et al., RELAXin in Acute Heart Failure (RELAX-AHF) Investigators. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet 381, 29–39 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. J.R. Teerlink, A.A. Voors, P. Ponikowski, P.S. Pang, B.H. Greenberg, G. Filippatos et al., Serelaxin in addition to standard therapy in acute heart failure: rationale and design of the RELAX-AHF-2 study. Eur. J. Heart Fail. 19, 800–809 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S.L. Teichman, E. Unemori, J.R. Teerlink, G. Cotter, M. Metra, Relaxin: review of biology and potential role in treating heart failure. Curr. Heart Fail. Rep. 7, 75–82 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. R.K. Ghosh, K. Banerjee, R. Tummala, S. Ball, K. Ravakhah, A. Gupta, Serelaxin in acute heart failure: most recent update on clinical and preclinical evidence. Cardiovasc. Ther. 35, 55–63 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. N. Sato, C.S. Lam, J.R. Teerlink, B.H. Greenberg, H. Tsutsui, B.H. Oh et al., Evaluating the efficacy, safety, and tolerability of serelaxin when added to standard therapy in Asian patients with acute heart failure: design and rationale of RELAX-AHF-ASIA Trial. J. Card. Fail. 23, 63–71 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. S. Singh, R.L. Simpson, R.G. Bennett, Relaxin activates peroxisome proliferator-activated receptor γ (PPARγ) through a pathway involving PPARγ coactivator 1α (PGC1α). J. Biol. Chem. 290, 950–959 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. J.S. Bonner, L. Lantier, K.M. Hocking, L. Kang, M. Owolabi, F.D. James et al., Relaxin treatment reverses insulin resistance in mice fed a high-fat diet. Diabetes 62, 3251–3260 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. Szepietowska, M. Gorska, M. Szelachowska, Plasma relaxin concentration is related to beta-cell function and insulin sensitivity in women with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 79, e1–e3 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. X. Zhang, M. Zhu, M. Zhao, W. Chen, Y. Fu, Y. Liu et al., The plasma levels of relaxin-2 and relaxin-3 in patients with diabetes. Clin. Biochem. 46, 1713–1716 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. M.H. Ghattas, E.T. Mehanna, N.M. Mesbah, D.M. Abo-Elmatty, Relaxin-3 is associated with metabolic syndrome and its component traits in women. Clin. Biochem. 46, 45–48 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. B.M. McGowan, J.S. Minnion, K.G. Murphy, N.E. White, D. Roy, S.A. Stanley et al., Central and peripheral administration of human relaxin-2 to adult male rats inhibits food intake. Diabetes Obes. Metab. 12, 1090–1096 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. C. Lenglos, J. Calvez, E. Timofeeva, Sex-specific effects of relaxin-3 on food intake and brain expression of corticotropin-releasing factor in rats. Endocrinology 156, 523–533 (2015)

    Article  PubMed  Google Scholar 

  15. C. Lenglos, A. Mitra, G. Guèvremont, E. Timofeeva, Regulation of expression of relaxin-3 and its receptor RXFP3 in the brain of diet-induced obese rats. Neuropeptides 48, 119–132 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. H. Yamamoto, H. Shimokawa, T. Haga, Y. Fukui, K. Iguchi, K. Unno et al., The expression of relaxin-3 in adipose tissue and its effects on adipogenesis. Protein Pept. Lett. 21, 517–522 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. T. Doenst, T.D. Nguyen, E.D. Abel, Cardiac metabolism in heart failure—implications beyond ATP production. Circ. Res. 113, 709–724 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J.R. González-Juanatey, M.J. Iglesias, C. Alcaide, R. Piñeiro, F. Lago, Doxazosin induces apoptosis in cardiomyocytes cultured in vitro by a mechanism that is independent of alpha1-adrenergic blockade. Circulation 107, 127–131 (2003)

    Article  PubMed  Google Scholar 

  19. R. Piñeiro, M.J. Iglesias, R. Gallego, K. Raghay, S. Eiras, J. Rubio et al., Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett. 579, 5163–5169 (2005)

    Article  PubMed  Google Scholar 

  20. P.V. Lear, M.J. Iglesias, S. Feijóo-Bandín, D. Rodríguez-Penas, A. Mosquera-Leal, V. García-Rúa et al., Des-acyl ghrelin has specific binding sites and different metabolic effects from ghrelin in cardiomyocytes. Endocrinology 151, 3286–3298 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. J. Pu, G. Peng, L. Li, H. Na, Y. Liu, P. Liu, Palmitic acid acutely stimulates glucose uptake via activation of Akt and ERK1/2 in skeletal muscle cells. J. Lipid Res. 52, 1319–1327 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. L.K.M. Steinbusch, R.W. Schwenk, D.M. Ouwens, M. Diamant, J.F.C. Glatz, J.J.F.P. Luiken, Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol. Life Sci. 68, 2525–2538 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C.T. Lee, J.R. Ussher, A. Mohammad, A. Lam, G.D. Lopaschuk, 5′-AMP-activated protein kinase increases glucose uptake independent of GLUT4 translocation in cardiac myocytes. Can. J. Physiol. Pharmacol. 92, 307–314 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. S.R. Hargett, N.N. Walker, S.R. Keller, Rab GAPs AS160 and Tbc1d1 play nonredundant roles in the regulation of glucose and energy homeostasis in mice. Am. J. Physiol. Endocrino Metab. 310, E276–E288 (2016)

    Article  Google Scholar 

  25. J. Nonhoff, M. Ricke-Hoch, M. Mueller, B. Stapel, T. Pfeffer, M. Kasten et al., Serelaxin treatment promotes adaptive hypertrophy but does not prevent heart failure in experimental peripartum cardiomyopathy. Cardiovasc. Res. 113, 598–608 (2017)

    PubMed  PubMed Central  Google Scholar 

  26. E. Unemori, Serelaxin in clinical development: past, present and future. Br. J. Pharmacol. 174, 921–932 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. A.M. Perna, E. Masini, S. Nistri, T. Bani Sacchi, M. Bigazzi, D. Bani, Human recombinant relaxin reduces heart injury and improves ventricular performance in a swine model of acute myocardial infarction. Ann. N. Y. Acad. Sci. 1041, 431–433 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. A.M. Perna, E. Masini, S. Nistri, V. Briganti, L. Chiappini, P. Stefano et al., Novel drug development opportunity for relaxin in acute myocardial infarction: evidences from a swine model. FASEB J. 19, 1525–1527 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. C.H. Leo, M. Jelinic, H.C. Parkington, M. Tare, L.J. Parry, Acute intravenous injection of serelaxin (recombinant human relaxin-2) causes rapid and sustained bradykinin-mediated vasorelaxation. J. Am. Heart Assoc. 3, e000493 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  30. T. Dschietzig, A. Brecht, C. Bartsch, G. Baumann, K. Stangl, K. Alexiou, Relaxin improves TNF-α-induced endothelial dysfunction: the role of glucocorticoid receptor and phosphatidylinositol 3-kinase signalling. Cardiovasc. Res. 95, 97–107 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. H.H. Ng, C.H. Leo, L.J. Parry, Serelaxin (recombinant human relaxin-2) prevents high glucose-induced endothelial dysfunction by meliorating prostacyclin production in the mouse aorta. Pharmacol. Res. 107, 220–228 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. V. Tiyerili, T. Beiert, H. Schatten, B. Camara, J. Jehle, J.W. Schrickel et al., Anti-atherosclerotic effects of serelaxin in apolipoprotein E-deficient mice. Atherosclerosis 251, 430–437 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. C.S. Samuel, E.N. Unemori, I. Mookerjee, R.A. Bathgate, S.L. Layfield, J. Mak et al., Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145, 4125–4133 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. D. Bani, S. Nistri, L. Formigli, E. Meacci, F. Francini, S. Zecchi-Orlandini, Prominent role of relaxin in improving postinfarction heart remodeling. Ann. N. Y. Acad. Sci. 1160, 269–277 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. A. Frati, B. Ricci, F. Pierucci, S. Nistri, D. Bani, E. Meacci, Role of sphingosine kinase/S1P axis in ECM remodeling of cardiac cells elicited by relaxin. Mol. Endocrinol. 29, 53–67 (2015)

    Article  PubMed  Google Scholar 

  36. J. Valle Raleigh, A.G. Mauro, T. Devarakonda, C. Marchetti, J. He, E. Kim et al., Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovasc. Res. 113, 609–619 (2017)

    PubMed  Google Scholar 

  37. A. Parikh, D. Patel, C.F. McTiernan, W. Xiang, J. Haney, L. Yang et al., Relaxin suppresses atrial fibrillation by reversing fibrosis and myocyte hypertrophy and increasing conduction velocity and sodium current in spontaneously hypertensive rat hearts. Circ. Res. 113, 313–321 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. B.L. Henry, B. Gabris, Q. Li, B. Martin, M. Giannini, A. Parikh, D. Patel et al., Relaxin suppresses atrial fibrillation in aged rats by reversing fibrosis and upregulating Na + channels. Heart Rhythm. 13, 983–991 (2016)

    Article  PubMed  Google Scholar 

  39. L. Formigli, F. Francini, L. Chiappini, S. Zecchi-Orlandini, D. Bani, Relaxin favors the morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture. Ann. N. Y. Acad. Sci. 1041, 444–445 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. X.L. Moore, S.L. Tan, C.Y. Lo, L. Fang, Y.D. Su, X.M. Gao et al., Relaxin antagonizes hypertrophy and apoptosis in neonatal rat cardiomyocytes. Endocrinology 148, 1582–1589 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. L. Formigli, F. Francini, S. Nistri, M. Margheri, G. Luciani, F. Naro et al., Skeletal myoblasts overexpressing relaxin improve differentiation and communication of primary murine cardiomyocyte cell cultures. J. Mol. Cell Cardiol. 47, 335–345 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. S. Nistri, A. Pini, C. Sassoli, R. Squecco, F. Francini, L. Formigli et al., Relaxin promotes growth and maturation of mouse neonatal cardiomyocytes in vitro: clues for cardiac regeneration. J. Cell Mol. Med. 16, 507–519 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C. Sassoli, F. Chellini, A. Pini, A. Tani, S. Nistri, D. Nosi et al., Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One 8, e63896 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  44. G. Boccalini, C. Sassoli, L. Formigli, D. Bani, S. Nistri, Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: involvement of the Notch-1 pathway. FASEB J. 29, 239–249 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. T. Dschietzig, C. Richter, C. Bartsch, M. Laule, F.P. Armbruster, G. Baumann et al., The pregnancy hormone relaxin is a player in human heart failure. FASEB J. 15, 2187–2195 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. X. Zhang, X. Ma, M. Zhao, B. Zhang, J. Chi, W. Liu et al., H2 and H3 relaxin inhibit high glucose-induced apoptosis in neonatal rat ventricular myocytes. Biochimie 108, 59–67 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. A. Pini, G. Boccalini, M.C. Baccari, M. Becatti, R. Garella, C. Fiorillo et al., Protection from cigarette smoke-induced vascular injury by recombinant human relaxin-2 (serelaxin). J. Cell Mol. Med. 20, 891–902 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. L.H. Bergeron, J.M. Willcox, F.J. Alibhai, B.J. Connell, T.M. Saleh, B.C. Wilson et al., Relaxin peptide hormones are protective during the early stages of ischemic stroke in male rats. Endocrinology 156, 638–646 (2015)

    Article  PubMed  Google Scholar 

  49. X. Ma, S. Han, W. Zhang, Y.J. Fan, M.N. Liu, A.Y. Liu et al., Protection of cultured human hepatocytes from hydrogen peroxide-induced apoptosis by relaxin-3. Mol. Med Rep. 11, 1228–1234 (2015)

    Article  CAS  PubMed  Google Scholar 

  50. K. Domińska, T. Ochędalski, K. Kowalska, Z.E. Matysiak-Burzyńska, E. Płuciennik, A.W. Piastowska-Ciesielska, Interaction between angiotensin II and relaxin 2 in the progress of growth and spread of prostate cancer cells. Int. J. Oncol. 48, 2619–2628 (2016)

    Article  PubMed  Google Scholar 

  51. X.C. Xie, N. Zhao, Q.H. Xu, X. Yang, W.K. Xia, Q. Chen et al., Relaxin attenuates aristolochic acid induced human tubular epithelial cell apoptosis in vitro by activation of the PI3K/Akt signaling pathway. Apoptosis 22, 769–776 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. A. Fukushima, K. Milner, A. Gupta, G.D. Lopaschuk, Myocardial energy substrate metabolism in heart failure: from pathways to therapeutic targets. Curr. Pharm. Des. 21, 3654–3664 (2015)

    Article  CAS  PubMed  Google Scholar 

  53. M. Collino, M. Rogazzo, A. Pini, E. Benetti, A.C. Rosa, F. Chiazza et al., Acute treatment with relaxin protects the kidney against ischaemia/reperfusion injury. J. Cell. Mol. Med. 17, 1494–1505 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. X.X. Shuai, Y.D. Meng, Y.X. Lu, G.H. Su, X.F. Tao, J. Han et al., Relaxin-2 improves diastolic function of pressure-overloaded rats via phospholamban by activating Akt. Int. J. Cardiol. 218, 305–311 (2016)

    Article  PubMed  Google Scholar 

  55. H.J. Sun, D. Chen, Y. Han, Y.B. Zhou, J.J. Wang, Q. Chen et al., Relaxin in paraventricular nucleus contributes to sympathetic overdrive and hypertension via PI3K-Akt pathway. Neuropharmacology 103, 247–256 (2016)

    Article  CAS  PubMed  Google Scholar 

  56. O. Ogunleye, B. Campo, D. Herrera, E.D. Post Uiterweer, K.P. Conrad, Relaxin confers cytotrophoblast protection from hypoxia-reoxygenation injury through the phosphatidylinositol 3-kinase-Akt/protein kinase B cell survival pathway. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R559–R568 (2017)

    Article  PubMed  Google Scholar 

  57. X.L. Moore, Y. Su, Y. Fan, Y.Y. Zhang, E.A. Woodcock, A.M. Dart et al., Diverse regulation of cardiac expression of relaxin receptor by α1- and β1-adrenoceptors. Cardiovasc. Drugs Ther. 28, 221–228 (2014)

    Article  CAS  PubMed  Google Scholar 

  58. M.A. Sussman, M. Völkers, K. Fischer, B. Bailey, C.T. Cottage, S. Din et al., Myocardial AKT: the omnipresent nexus. Physiol. Rev. 91, 1023–1070 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. G.D. Cartee, J.F. Wojtaszewski, Role of AKT substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl. Physiol. Nutr. Metab. 32, 557–566 (2007)

    Article  CAS  PubMed  Google Scholar 

  60. N. Fujii, N. Jessen, L.J. Goodyear, AMP-activated protein kinase and the regulation of glucose transport. Am. J. Physiol. Endocrinol. Metab. 291, E867–E877 (2006)

    Article  CAS  PubMed  Google Scholar 

  61. I.P. Salt, D.G. Hardie, AMP-activated protein kinase: an ubiquitous signaling pathway with key roles in the cardiovascular system. Circ. Res. 120, 1825–1841 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. R.R. Russell 3rd, R. Bergeron, G.I. Shulman, L.H. Young, Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am. J. Physiol. 277, H643–H649 (1999)

    CAS  PubMed  Google Scholar 

  63. H.F. Kramer, C.A. Witczak, N. Fujii, N. Jessen, E.B. Taylor, D.E. Arnolds et al., Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55(2), 067–2076 (2006)

    Google Scholar 

  64. A. Ginion, J. Auquier, C.R. Benton, C. Mouton, J.L. Vanoverschelde, L. Hue et al., Inhibition of the mTOR/p70S6K pathway is not involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake. Am. J. Physiol. Heart Circ. Physiol. 301, H469–H477 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Health “Fondo de Investigaciones Sanitarias del Instituto de Salud Carlos III” Madrid, Spain [PI15/00681 and CIBER de Enfermedades Cardiovasculares (CIBERCV)]; and European Regional Development Fund (FEDER). Alana Aragón-Herrera was funded by a predoctoral research grant from the Institute of Biomedical Research (IDIS-SERGAS), Xunta de Galicia, Santiago de Compostela, Spain, and by the FPU Program from the Spanish Ministry of Education, Culture and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Feijóo-Bandín.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Aragón-Herrera A, Feijóo-Bandín S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aragón-Herrera, A., Feijóo-Bandín, S., Rodríguez-Penas, D. et al. Relaxin activates AMPK-AKT signaling and increases glucose uptake by cultured cardiomyocytes. Endocrine 60, 103–111 (2018). https://doi.org/10.1007/s12020-018-1534-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1534-3

Keywords

Navigation