Abstract
Hypoxic state affects organism primarily by decreasing the amount of oxygen reaching the cells and tissues. To adjust with changing environment organism undergoes mechanisms which are necessary for acclimatization to hypoxic stress. Pulmonary vascular remodelling is one such mechanism controlled by hormonal peptides present in blood circulation for acclimatization. Activation of peptides regulates constriction and relaxation of blood vessels of pulmonary and systemic circulation. Thus, understanding of vascular tone maintenance and hypoxic pulmonary vasoconstriction like pathophysiological condition during hypoxia is of prime importance. Endothelin-1 (ET-1), atrial natriuretic peptide (ANP), and renin angiotensin system (RAS) function, their receptor functioning and signalling during hypoxia in different body parts point them as disease markers. In vivo and in vitro studies have helped understanding the mechanism of hormonal peptides for better acclimatization to hypoxic stress and interventions for better management of vascular remodelling in different models like cell, rat, and human is discussed in this review.








References
J.A. Dempsey, W.G. Reddan, M.L. Birnbaum, H.V. Forster, J.S. Thoden, R.F. Grover, J. Rankin, Effects of acute through life-long hypoxic exposure on exercise pulmonary gas exchange. Respir. Physiol. 13(1), 62–89 (1971)
R. Ashack, M.O. Farber, M.H. Weinberger, G.L. Robertson, N.S. Fineberg, F. Manfredi, Renal and hormonal responses to acute hypoxia in normal individuals. J. Lab. Clin. Med. 106(1), 12–16 (1985)
F.H. Al-Hashem, The effect of high altitude on blood hormones in male Westar rats in South western Saudi Arabia. Am. J. Environ. Sci. 6(3), 268–274 (2010)
N. Mason, The physiology of high altitude: an introduction to the cardio-respiratory changes occurring on ascent to altitude. Curr. Anaesth. Crit. Care 11(1), 34–41 (2000)
E.R. Swenson, T.B. Duncan, S.V. Goldberg, G. Ramirez, S. Ahmad, R.B. Schoene, Diuretic effect of acute hypoxia in humans: relationship to hypoxic ventilatory responsiveness and renal hormones. J. Appl. Physiol. 78(2), 377–383 (1995)
P. Ariyaratnam, M. Loubani, A.H. Morice, Hypoxic pulmonary vasoconstriction in humans. BioMed. Res. Int. 2013, 623684 (2013). https://doi.org/10.1155/2013/623684
P.I. Aaronson, T.P. Robertson, G.A. Knock, S. Becker, T.H. Lewis, V. Snetkov, J.P. Ward, Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J. Physiol. 570(Pt 1), 53–58 (2006). https://doi.org/10.1113/jphysiol.2005.098855
K.R. Stenmark, K.A. Fagan, M.G. Frid, Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ. Res. 99(7), 675–691 (2006). https://doi.org/10.1161/01.RES.0000243584.45145.3f
A. Hussain, M.S. Suleiman, S.J. George, M. Loubani, A. Morice, Hypoxic pulmonary vasoconstriction in humans: tale or myth. Open. Cardiovasc. Med. J. 11, 1–13 (2017). https://doi.org/10.2174/1874192401711010001
A.B. Lumb, P. Slinger, Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology 122(4), 932–946 (2015). https://doi.org/10.1097/ALN.0000000000000569
M. Yanagisawa, H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, T. Masaki, A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163), 411–415 (1988). https://doi.org/10.1038/332411a0
D. Xu, N. Emoto, A. Giaid, C. Slaughter, S. Kaw, D. deWit, M. Yanagisawa, ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 78(3), 473–485 (1994)
T.J. Opgenorth, J.R. Wu-Wong, K. Shiosaki, Endothelin-converting enzymes. FASEB J. 6(9), 2653–2659 (1992)
T. Sakurai, M. Yanagisawa, Y. Takuwa, H. Miyazaki, S. Kimura, K. Goto, T. Masaki, Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348(6303), 732–735 (1990). https://doi.org/10.1038/348732a0
V.J. Harrison, R. Corder, E.E. Anggard, J.R. Vane, Evidence for vesicles that transport endothelin-1 in bovine aortic endothelial cells. J. Cardiovasc. Pharmacol. 22(Suppl 8), S57–S60 (1993)
M.J. Boscoe, A.T. Goodwin, M. Amrani, M.H. Yacoub, Endothelins and the lung. Int. J. Biochem. Cell. Biol. 32(1), 41–62 (2000)
Y. Miyoshi, Y. Nakaya, T. Wakatsuki, S. Nakaya, K. Fujino, K. Saito, I. Inoue, Endothelin blocks ATP-sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery. Circ. Res. 70(3), 612–616 (1992)
M.J. Kuchan, J.A. Frangos, Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am. J. Physiol. 264(1 Pt 2), H150–H156 (1993)
K. Sato, Y. Morio, K.G. Morris, D.M. Rodman, I.F. McMurtry, Mechanism of hypoxic pulmonary vasoconstriction involves ET(A) receptor-mediated inhibition of K(ATP) channel. Am. J. Physiol. Lung Cell. Mol. Physiol. 278(3), L434–L442 (2000)
M.J. Horgan, J.M. Pinheiro, A.B. Malik, Mechanism of endothelin-1-induced pulmonary vasoconstriction. Circ. Res. 69(1), 157–164 (1991)
K. Nakanishi, F. Tajima, Y. Nakata, H. Osada, S. Tachibana, T. Kawai, C. Torikata, T. Suga, K. Takishima, T. Aurues, T. Ikeda, Expression of endothelin-1 in rats developing hypobaric hypoxia-induced pulmonary hypertension. Lab. Invest. 79(11), 1347–1357 (1999)
D.J. Stewart, R.D. Levy, P. Cernacek, D. Langleben, Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann. Intern. Med. 114(6), 464–469 (1991)
S. Oparil, S.J. Chen, Q.C. Meng, T.S. Elton, M. Yano, Y.F. Chen, Endothelin-A receptor antagonist prevents acute hypoxia-induced pulmonary hypertension in the rat. Am. J. Physiol. 268(1 Pt 1), L95–L100 (1995)
V.S. DiCarlo, S.J. Chen, Q.C. Meng, J. Durand, M. Yano, Y.F. Chen, S. Oparil, ETA-receptor antagonist prevents and reverses chronic hypoxia-induced pulmonary hypertension in rat. Am. J. Physiol. 269(5 Pt 1), L690–L697 (1995)
S.T. Bonvallet, M.R. Zamora, K. Hasunuma, K. Sato, N. Hanasato, D. Anderson, K. Sato, T.J. Stelzner, BQ123, an ETA-receptor antagonist, attenuates hypoxic pulmonary hypertension in rats. Am. J. Physiol. 266(4 Pt 2), H1327–H1331 (1994)
W. Johnson, A. Nohria, L. Garrett, J.C. Fang, J. Igo, M. Katai, P. Ganz, M.A. Creager, Contribution of endothelin to pulmonary vascular tone under normoxic and hypoxic conditions. Am. J. Physiol. Heart Circ. Physiol. 283(2), H568–H575 (2002). https://doi.org/10.1152/ajpheart.00099.2001
I. Pham, G. Wuerzner, J.P. Richalet, S. Peyrard, M. Azizi, Endothelin receptors blockade blunts hypoxia-induced increase in PAP in humans. Eur. J. Clin. Invest. 40(3), 195–202 (2010). https://doi.org/10.1111/j.1365-2362.2010.02254.x
P.A. Modesti, S. Vanni, M. Morabito, A. Modesti, M. Marchetta, T. Gamberi, F. Sofi, G. Savia, G. Mancia, G.F. Gensini, G. Parati, Role of endothelin-1 in exposure to high altitude: acute mountain sickness and endothelin-1 (ACME-1) study. Circulation 114(13), 1410–1416 (2006). https://doi.org/10.1161/CIRCULATIONAHA.105.605527
R.D. Seheult, K. Ruh, G.P. Foster, J.D. Anholm, Prophylactic bosentan does not improve exercise capacity or lower pulmonary artery systolic pressure at high altitude. Respir. Physiol. Neurobiol. 165(2–3), 123–130 (2009). https://doi.org/10.1016/j.resp.2008.10.005
R. Naeije, S. Huez, M. Lamotte, K. Retailleau, S. Neupane, D. Abramowicz, V. Faoro, Pulmonary artery pressure limits exercise capacity at high altitude. Eur. Respir. J. 36(5), 1049–1055 (2010). https://doi.org/10.1183/09031936.00024410
D. Kylhammar, G. Radegran, The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol. 219(4), 728–756 (2017). https://doi.org/10.1111/apha.12749
V.V. Kuzkov, M.Y. Kirov, M.A. Sovershaev, V.N. Kuklin, E.V. Suborov, K. Waerhaug, L.J. Bjertnaes, Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit. Care. Med. 34(6), 1647–1653 (2006). https://doi.org/10.1097/01.CCM.0000218817.24208.2E
I. Kosmidou, D. Karmpaliotis, A.J. Kirtane, H.V. Barron, C.M. Gibson, Vascular endothelial growth factors in pulmonary edema: an update. J. Thromb. Thrombolysis 25(3), 259–264 (2008). https://doi.org/10.1007/s11239-007-0062-4
A.P. Comellas, A. Briva, Role of endothelin-1 in acute lung injury. Transl. Res. 153(6), 263–271 (2009). https://doi.org/10.1016/j.trsl.2009.02.007
I. Pham, G. Wuerzner, J.P. Richalet, S. Peyrard, M. Azizi, Bosentan effects in hypoxic pulmonary vasoconstriction: preliminary study in subjects with or without high altitude pulmonary edema-history. Pulm. Circ. 2(1), 28–33 (2012). https://doi.org/10.4103/2045-8932.94824
C. Sartori, L. Vollenweider, B.M. Loffler, A. Delabays, P. Nicod, P. Bartsch, U. Scherrer, Exaggerated endothelin release in high-altitude pulmonary edema. Circulation 99(20), 2665–2668 (1999)
S.W. Allen, B.A. Chatfield, S.A. Koppenhafer, M.S. Schaffer, R.R. Wolfe, S.H. Abman, Circulating immunoreactive endothelin-1 in children with pulmonary hypertension. Association with acute hypoxic pulmonary vasoreactivity. Am. Rev. Respir. Dis. 148(2), 519–522 (1993). https://doi.org/10.1164/ajrccm/148.2.519
M.P. Schneider, E.I. Boesen, D.M. Pollock, Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu. Rev. Pharmacol. Toxicol. 47, 731–759 (2007). https://doi.org/10.1146/annurev.pharmtox.47.120505.105134
B.K. Kramer, M. Bucher, P. Sandner, K.P. Ittner, G.A. Riegger, T. Ritthaler, A. Kurtz, Effects of hypoxia on growth factor expression in the rat kidney in vivo. Kidney Int. 51(2), 444–447 (1997)
K.U. Eckardt, W.M. Bernhardt, A. Weidemann, C. Warnecke, C. Rosenberger, M.S. Wiesener, C. Willam, Role of hypoxia in the pathogenesis of renal disease. Kidney Int. Suppl. 99, S46–S51 (2005). https://doi.org/10.1111/j.1523-1755.2005.09909.x
D.E. Kohan, E. Padilla, Osmolar regulation of endothelin-1 production by rat inner medullary collecting duct. J. Clin. Invest. 91(3), 1235–1240 (1993). https://doi.org/10.1172/JCI116286
V.H. Haase, Mechanisms of hypoxia responses in renal tissue. J. Am. Soc. Nephrol. 24(4), 537–541 (2013). https://doi.org/10.1681/ASN.2012080855
A. Nir, A.L. Clavell, D. Heublein, L.L. Aarhus, J.C. Burnett Jr., Acute hypoxia and endogenous renal endothelin. J. Am. Soc. Nephrol. 4(11), 1920–1924 (1994)
J.B. Heimlich, J.S. Speed, C.J. Bloom, P.M. O’Connor, J.S. Pollock, D.M. Pollock, ET-1 increases reactive oxygen species following hypoxia and high-salt diet in the mouse glomerulus. Acta Physiol. 213(3), 722–730 (2015). https://doi.org/10.1111/apha.12397
B. Kisch, Electron microscopy of the atrium of the heart. I. Guinea pig. Exp. Med. Surg. 14(2–3), 99–112 (1956)
K. Kangawa, H. Matsuo, Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem. Biophys. Res. Commun. 118(1), 131–139 (1984)
Y. Saito, Roles of atrial natriuretic peptide and its therapeutic use. J. Cardiol. 56(3), 262–270 (2010)
K.S. Misono, J.S. Philo, T. Arakawa, C.M. Ogata, Y. Qiu, H. Ogawa, H.S. Young, Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase. FEBS J. 278(11), 1818–1829 (2011). https://doi.org/10.1111/j.1742-4658.2011.08083.x
L.R. Potter, Natriuretic peptide metabolism, clearance and degradation. FEBS J. 278(11), 1808–1817 (2011). https://doi.org/10.1111/j.1742-4658.2011.08082.x
O. Arjamaa, M. Nikinmaa, Hypoxia regulates the natriuretic peptide system. Int. J. Physiol. Pathophysiol. Pharmacol. 3(3), 191–201 (2011)
R.J. Winter, L. Zhao, T. Krausz, J.M. Hughes, Neutral endopeptidase 24.11 inhibition reduces pulmonary vascular remodeling in rats exposed to chronic hypoxia. Am. Rev. Respir. Dis. 144(6), 1342–1346 (1991). https://doi.org/10.1164/ajrccm/144.6.1342
N.B. Standen, J.M. Quayle, K+ channel modulation in arterial smooth muscle. Acta Physiol. Scand. 164(4), 549–557 (1998). https://doi.org/10.1046/j.1365-201X.1998.00433.x
M. Kuhn, Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ. Res. 93(8), 700–709 (2003). https://doi.org/10.1161/01.RES.0000094745.28948.4D
Y.F. Chen, Atrial natriuretic peptide in hypoxia. Peptides 26(6), 1068–1077 (2005). https://doi.org/10.1016/j.peptides.2004.08.030
O. Pauvert, S. Bonnet, E. Rousseau, R. Marthan, J.P. Savineau, Sildenafil alters calcium signaling and vascular tone in pulmonary arteries from chronically hypoxic rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 287(3), L577–L583 (2004). https://doi.org/10.1152/ajplung.00449.2003
M. Gomberg-Maitland, V. McLaughlin, M. Gulati, S. Rich, Efficacy and safety of sildenafil added to treprostinil in pulmonary hypertension. Am. J. Cardiol. 96(9), 1334–1336 (2005). https://doi.org/10.1016/j.amjcard.2005.06.083
H.H. Leuchte, M. Schwaiblmair, R.A. Baumgartner, C.F. Neurohr, T. Kolbe, J. Behr, Hemodynamic response to sildenafil, nitric oxide, and iloprost in primary pulmonary hypertension. Chest 125(2), 580–586 (2004)
D. Wang, S. Oparil, J.A. Feng, P. Li, G. Perry, L.B. Chen, M. Dai, S.W. John, Y.F. Chen, Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension 42(1), 88–95 (2003). https://doi.org/10.1161/01.HYP.0000074905.22908.A6
Y.S. Chun, J.Y. Hyun, Y.G. Kwak, I.S. Kim, C.H. Kim, E. Choi, M.S. Kim, J.W. Park, Hypoxic activation of the atrial natriuretic peptide gene promoter through direct and indirect actions of hypoxia-inducible factor-1. Biochem. J. 370(Pt 1), 149–157 (2003). https://doi.org/10.1042/BJ20021087
Q.L. Zhang, B.R. Cui, H.Y. Li, P. Li, L. Hong, L.P. Liu, D.Z. Ding, X. Cui, MAPK and PI3K pathways regulate hypoxia-induced atrial natriuretic peptide secretion by controlling HIF-1 alpha expression in beating rabbit atria. Biochem. Biophys. Res. Commun. 438(3), 507–512 (2013). https://doi.org/10.1016/j.bbrc.2013.07.106
W. Forssmann, M. Meyer, K. Forssmann, The renal urodilatin system: clinical implications. Cardiovasc. Res. 51(3), 450–462 (2001)
B. Haditsch, A. Roessler, P. Krisper, H. Frisch, H.G. Hinghofer-Szalkay, N. Goswami, Volume regulation and renal function at high altitude across gender. PLoS. One 10(3), e0118730 (2015). https://doi.org/10.1371/journal.pone.0118730
R.G. Westendorp, A.N. Roos, H.G. van der Hoeven, M.Y. Tjiong, R. Simons, M. Frolich, J.H. Souverijn, A.E. Meinders, Atrial natriuretic peptide improves pulmonary gas exchange in subjects exposed to hypoxia. Am. Rev. Respir. Dis. 148(2), 304–309 (1993). https://doi.org/10.1164/ajrccm/148.2.304
T.J. Tunny, J. van Gelder, R.D. Gordon, S.A. Klemm, S.M. Hamlet, W.L. Finn, G.M. Carney, C. Brand-Maher, Effects of altitude on atrial natriuretic peptide: the Bicentennial Mount Everest expedition. Clin. Exp. Pharmacol. Physiol. 16(4), 287–291 (1989)
A. Kawashima, K. Kubo, K. Hirai, S. Yoshikawa, Y. Matsuzawa, T. Kobayashi, Plasma levels of atrial natriuretic peptide under acute hypoxia in normal subjects. Respir. Physiol. 76(1), 79–91 (1989)
R.I. Cargill, B.J. Lipworth, Acute effects of ANP and BNP on hypoxic pulmonary vasoconstriction in humans. Br. J. Clin. Pharmacol. 40(6), 585–590 (1995)
M.C. Chappell, Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am. J. Physiol. Heart Circ. Physiol. 310(2), H137–H152 (2016). https://doi.org/10.1152/ajpheart.00618.2015
L.C. Roksnoer, K. Verdonk, A.H. van den Meiracker, E.J. Hoorn, R. Zietse, A.H. Danser, Urinary markers of intrarenal renin-angiotensin system activity in vivo. Curr. Hypertens. Rep. 15(2), 81–88 (2013). https://doi.org/10.1007/s11906-012-0326-z
K.E. Bernstein, F.S. Ong, W.L. Blackwell, K.H. Shah, J.F. Giani, R.A. Gonzalez-Villalobos, X.Z. Shen, S. Fuchs, R.M. Touyz, A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev. 65(1), 1–46 (2013). https://doi.org/10.1124/pr.112.006809
J.T. August, D.H. Nelson, G.W. Thorn, Aldosterone. N. Engl. J. Med. 259(19), 917–923 (1958). https://doi.org/10.1056/NEJM195811062591907. contd
P.K. Mehta, K.K. Griendling, Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell. Physiol. 292(1), C82–C97 (2007). https://doi.org/10.1152/ajpcell.00287.2006
E. Kaschina, T. Unger, Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press. 12(2), 70–88 (2003)
Y. Imai, K. Kuba, T. Ohto-Nakanishi, J.M. Penninger, Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ. J. 74(3), 405–410 (2010)
K.B. Brosnihan, L.A. Neves, M.C. Chappell, Does the angiotensin-converting enzyme (ACE)/ACE2 balance contribute to the fate of angiotensin peptides in programmed hypertension? Hypertension 46(5), 1097–1099 (2005). https://doi.org/10.1161/01.HYP.0000185149.56516.0a
S. Wakahara, T. Konoshita, S. Mizuno, M. Motomura, C. Aoyama, Y. Makino, N. Kato, I. Koni, I. Miyamori, Synergistic expression of angiotensin-converting enzyme (ACE) and ACE2 in human renal tissue and confounding effects of hypertension on the ACE to ACE2 ratio. Endocrinology 148(5), 2453–2457 (2007). https://doi.org/10.1210/en.2006-1287
C.N. Bradford, D.R. Ely, M.K. Raizada, Targeting the vasoprotective axis of the renin-angiotensin system: a novel strategic approach to pulmonary hypertensive therapy. Curr. Hypertens. Rep. 12(4), 212–219 (2010). https://doi.org/10.1007/s11906-010-0122-6
R. Zhang, Y. Wu, M. Zhao, C. Liu, L. Zhou, S. Shen, S. Liao, K. Yang, Q. Li, H. Wan, Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 297(4), L631–L640 (2009). https://doi.org/10.1152/ajplung.90415.2008
L.J. Mullins, B.R. Conway, R.I. Menzies, L. Denby, J.J. Mullins, Renal disease pathophysiology and treatment: contributions from the rat. Dis. Model. Mech. 9(12), 1419–1433 (2016). https://doi.org/10.1242/dmm.027276
J. Loeffler, J. Stockigt, W. Ganong, Effect of alpha-and beta-adrenergic blocking agents on the increase in renin secretion produced by stimulation of the renal nerves. Neuroendocrinology 10(3), 129–138 (1972)
M. Nangaku, T. Fujita, Activation of the renin-angiotensin system and chronic hypoxia of the kidney. Hypertens. Res. 31(2), 175–184 (2008). https://doi.org/10.1291/hypres.31.175
H. Matsui, T. Shimosawa, K. Itakura, X. Guanqun, K. Ando, T. Fujita, Adrenomedullin can protect against pulmonary vascular remodeling induced by hypoxia. Circulation 109(18), 2246–2251 (2004). https://doi.org/10.1161/01.CIR.0000127950.13380.FD
C. Ruster, G. Wolf, Renin-angiotensin-aldosterone system and progression of renal disease. J. Am. Soc. Nephrol. 17(11), 2985–2991 (2006). https://doi.org/10.1681/ASN.2006040356
S. Srivastava, S. Dwivedi, Significance of renin angiotensin aldosterone system (RAAS) pathway in high altitude pulmonary edema (HAPE) susceptibility. J. Clin. Mol. Endocrinol 1(3), 1–4 (2016).
E.C. Fletcher, N. Orolinova, M. Bader, Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J. Appl. Physiol. 92(2), 627–633 (2002). https://doi.org/10.1152/japplphysiol.000152.2001
I. Hubloue, B. Rondelet, F. Kerbaul, D. Biarent, G.M. Milani, M. Staroukine, P. Bergmann, R. Naeije, M. Leeman, Endogenous angiotensin II in the regulation of hypoxic pulmonary vasoconstriction in anaesthetized dogs. Crit. Care 8(4), R163–R171 (2004). https://doi.org/10.1186/cc2860
K. Manotham, B. Ongvilawan, P. Urusopone, S. Chetsurakarn, J. Tanamai, P. Limkuansuwan, K. Tungsanga, S. Eiam-Ong, Angiotensin II receptor blocker partially ameliorated intrarenal hypoxia in chronic kidney disease patients: a pre-/post-study. Intern. Med. J. 42(4), e33–e37 (2012)
N.J. Marcus, Y.L. Li, C.E. Bird, H.D. Schultz, B.J. Morgan, Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: role of the angiotensin II type 1 receptor. Respir. Physiol. Neurobiol. 171(1), 36–45 (2010). https://doi.org/10.1016/j.resp.2010.02.003
M.C. Lansang, S.Y. Osei, D.A. Price, N.D. Fisher, N.K. Hollenberg, Renal hemodynamic and hormonal responses to the angiotensin II antagonist candesartan. Hypertension 36(5), 834–838 (2000)
N.R. Prabhakar, G.K. Kumar, Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir. Physiol. Neurobiol. 174(1–2), 156–161 (2010). https://doi.org/10.1016/j.resp.2010.08.021
V. Pialoux, G.E. Foster, S.B. Ahmed, A.E. Beaudin, P.J. Hanly, M.J. Poulin, Losartan abolishes oxidative stress induced by intermittent hypoxia in humans. J. Physiol. 589(Pt 22), 5529–5537 (2011). https://doi.org/10.1113/jphysiol.2011.218156
G.E. Foster, P.J. Hanly, S.B. Ahmed, A.E. Beaudin, V. Pialoux, M.J. Poulin, Intermittent hypoxia increases arterial blood pressure in humans through a renin-angiotensin system-dependent mechanism. Hypertension 56(3), 369–377 (2010). https://doi.org/10.1161/HYPERTENSIONAHA.110.152108
R. Tamisier, J.L. Pepin, J. Remy, J.P. Baguet, J.A. Taylor, J.W. Weiss, P. Levy, 14 nights of intermittent hypoxia elevate daytime blood pressure and sympathetic activity in healthy humans. Eur. Respir. J. 37(1), 119–128 (2011). https://doi.org/10.1183/09031936.00204209
G.S. Gilmartin, M. Lynch, R. Tamisier, J.W. Weiss, Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity. Am. J. Physiol. Heart Circ. Physiol. 299(3), H925–H931 (2010). https://doi.org/10.1152/ajpheart.00253.2009
G. Bao, N. Metreveli, R. Li, A. Taylor, E.C. Fletcher, Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J. Appl. Physiol. 83(1), 95–101 (1997)
E.C. Fletcher, J. Lesske, J. Culman, C.C. Miller, T. Unger, Sympathetic denervation blocks blood pressure elevation in episodic hypoxia. Hypertension 20(5), 612–619 (1992)
E.C. Fletcher, G. Bao, R. Li, Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension 34(2), 309–314 (1999)
S.Y. Lam, P.S. Leung, A locally generated angiotensin system in rat carotid body. Regul. Pept. 107(1–3), 97–103 (2002)
S.Y. Lam, Y. Liu, K.M. Ng, E.C. Liong, G.L. Tipoe, P.S. Leung, M.L. Fung, Upregulation of a local renin-angiotensin system in the rat carotid body during chronic intermittent hypoxia. Exp. Physiol. 99(1), 220–231 (2014). https://doi.org/10.1113/expphysiol.2013.074591
M. Boone, P.M. Deen, Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflug. Arch. 456(6), 1005–1024 (2008). https://doi.org/10.1007/s00424-008-0498-1
M.E. Alfie, S. Alim, D. Mehta, E.G. Shesely, O.A. Carretero, An enhanced effect of arginine vasopressin in bradykinin B2 receptor null mutant mice. Hypertension 33(6), 1436–1440 (1999)
C.W. Bourque, S.H. Oliet, D. Richard, Osmoreceptors, osmoreception, and osmoregulation. Front. Neuroendocrinol. 15(3), 231–274 (1994). https://doi.org/10.1006/frne.1994.1010
M.A. Knepper, Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. Am. J. Physiol. 272(1 Pt 2), F3–F12 (1997)
C.M. Maresh, W.J. Kraemer, D.A. Judelson, J.L. VanHeest, L. Trad, J.M. Kulikowich, K.L. Goetz, A. Cymerman, A.J. Hamilton, Effects of high altitude and water deprivation on arginine vasopressin release in men. Am. J. Physiol. Endocrinol. Metab. 286(1), E20–E24 (2004). https://doi.org/10.1152/ajpendo.00332.2003
G. Ramirez, D. Pineda, P.A. Bittle, H. Rabb, R. Rosen, D. Vesely, S. Sasaki, Partial renal resistance to arginine vasopressin as an adaptation to high altitude living. Aviat. Space Environ. Med. 69(1), 58–65 (1998)
A. Takamata, H. Nose, T. Kinoshita, M. Hirose, T. Itoh, T. Morimoto, Effect of acute hypoxia on vasopressin release and intravascular fluid during dynamic exercise in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279(1), R161–R168 (2000)
F.D. Blume, S.J. Boyer, L.E. Braverman, A. Cohen, J. Dirkse, J.P. Mordes, Impaired osmoregulation at high altitude: studies on Mt Everest. Jama 252(4), 524–526 (1984)
L. Ostergaard, A. Rudiger, S. Wellmann, E. Gammella, B. Beck-Schimmer, J. Struck, M. Maggiorini, M. Gassmann, Arginine-vasopressin marker copeptin is a sensitive plasma surrogate of hypoxic exposure. Hypoxia 2, 143–151 (2014). https://doi.org/10.2147/HP.S57894
R.L. Cosby, A.M. Sophocles, J.A. Durr, C.L. Perrinjaquet, B. Yee, R.W. Schrier, Elevated plasma atrial natriuretic factor and vasopressin in high-altitude pulmonary edema. Ann. Intern. Med. 109(10), 796–799 (1988)
P. Bartsch, M. Maggiorini, W. Schobersberger, S. Shaw, W. Rascher, J. Girard, P. Weidmann, O. Oelz, Enhanced exercise-induced rise of aldosterone and vasopressin preceding mountain sickness. J. Appl. Physiol. 71(1), 136–143 (1991)
O. Pak, A. Aldashev, D. Welsh, A. Peacock, The effects of hypoxia on the cells of the pulmonary vasculature. Eur. Respir. J. 30(2), 364–372 (2007). https://doi.org/10.1183/09031936.00128706
C. Fonseca, D. Abraham, E.A. Renzoni, Endothelin in pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 44(1), 1–10 (2011). https://doi.org/10.1165/rcmb.2009-0388TR
N.J. Davie, E.V. Gerasimovskaya, S.E. Hofmeister, A.P. Richman, P.L. Jones, J.T. Reeves, K.R. Stenmark, Pulmonary artery adventitial fibroblasts cooperate with vasa vasorum endothelial cells to regulate vasa vasorum neovascularization: a process mediated by hypoxia and endothelin-1. Am. J. Pathol. 168(6), 1793–1807 (2006). https://doi.org/10.2353/ajpath.2006.050754
L.A. Shimoda, S.S. Laurie, HIF and pulmonary vascular responses to hypoxia. J. Appl. Physiol. 116(7), 867–874 (2014). https://doi.org/10.1152/japplphysiol.00643.2013
P.M. Hassoun, V. Thappa, M.J. Landman, B.L. Fanburg, Endothelin 1: mitogenic activity on pulmonary artery smooth muscle cells and release from hypoxic endothelial cells. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. 199(2), 165–170 (1992)
Y. Fan, L. Wang, C. Liu, H. Zhu, L. Zhou, Y. Wang, X. Wu, Q. Li, Local renin-angiotensin system regulates hypoxia-induced vascular endothelial growth factor synthesis in mesenchymal stem cells. Int. J. Clin. Exp. Pathol. 8(3), 2505–2514 (2015)
Y. Zhang, J. Lv, H. Guo, X. Wei, W. Li, Z. Xu, Hypoxia-induced proliferation in mesenchymal stem cells and angiotensin II-mediated PI3K/AKT pathway. Cell. Biochem. Funct. 33(2), 51–58 (2015). https://doi.org/10.1002/cbf.3080
N.W. Morrell, P.D. Upton, M.A. Higham, M.H. Yacoub, J.M. Polak, J. Wharton, Angiotensin II stimulates proliferation of human pulmonary artery smooth muscle cells via the AT1 receptor. Chest 114(1 Suppl), 90S–91S (1998)
S. Krick, J. Hanze, B. Eul, R. Savai, U. Seay, F. Grimminger, J. Lohmeyer, W. Klepetko, W. Seeger, F. Rose, Hypoxia-driven proliferation of human pulmonary artery fibroblasts: cross-talk between HIF-1alpha and an autocrine angiotensin system. FASEB J. 19(7), 857–859 (2005). https://doi.org/10.1096/fj.04-2890fje
K.R. Stenmark, D. Bouchey, R. Nemenoff, E.C. Dempsey, M. Das, Hypoxia-induced pulmonary vascular remodeling: contribution of the adventitial fibroblasts. Physiol. Res. 49(5), 503–517 (2000)
M. Humbert, N.W. Morrell, S.L. Archer, K.R. Stenmark, M.R. MacLean, I.M. Lang, B.W. Christman, E.K. Weir, O. Eickelberg, N.F. Voelkel, M. Rabinovitch, Cellular and molecular pathobiology of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 43(12 Suppl S), 13S–24S (2004). https://doi.org/10.1016/j.jacc.2004.02.029
N.J. Davie, J.T. Crossno Jr., M.G. Frid, S.E. Hofmeister, J.T. Reeves, D.M. Hyde, T.C. Carpenter, J.A. Brunetti, I.K. McNiece, K.R. Stenmark, Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 286(4), L668–L678 (2004). https://doi.org/10.1152/ajplung.00108.2003
M. Vogler, S. Vogel, S. Krull, K. Farhat, P. Leisering, S. Lutz, C.M. Wuertz, D.M. Katschinski, A. Zieseniss, Hypoxia modulates fibroblastic architecture, adhesion and migration: a role for HIF-1alpha in cofilin regulation and cytoplasmic actin distribution. PLoS. One 8(7), e69128 (2013). https://doi.org/10.1371/journal.pone.0069128
D.M. Gilkes, S. Bajpai, P. Chaturvedi, D. Wirtz, G.L. Semenza, Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem. 288(15), 10819–10829 (2013). https://doi.org/10.1074/jbc.M112.442939
S. Mizuno, H.J. Bogaard, N.F. Voelkel, Y. Umeda, M. Kadowaki, S. Ameshima, I. Miyamori, T. Ishizaki, Hypoxia regulates human lung fibroblast proliferation via p53-dependent and -independent pathways. Respir. Res. 10, 17 (2009). https://doi.org/10.1186/1465-9921-10-17
Y. Horino, S. Takahashi, T. Miura, Y. Takahashi, Prolonged hypoxia accelerates the posttranscriptional process of collagen synthesis in cultured fibroblasts. Life Sci. 71(26), 3031–3045 (2002)
L. Rosano, F. Spinella, A. Bagnato, Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 13(9), 637–651 (2013). https://doi.org/10.1038/nrc3546
A. Bouallegue, G.B. Daou, A.K. Srivastava, Endothelin-1-induced signaling pathways in vascular smooth muscle cells. Curr. Vasc. Pharmacol. 5(1), 45–52 (2007)
G.E. Morris, C.P. Nelson, N.B. Standen, R.A. Challiss, J.M. Willets, Endothelin signalling in arterial smooth muscle is tightly regulated by G protein-coupled receptor kinase 2. Cardiovasc. Res. 85(3), 424–433 (2010). https://doi.org/10.1093/cvr/cvp310
M.B. Anand-Srivastava, Natriuretic peptide receptor-C signaling and regulation. Peptides 26(6), 1044–1059 (2005). https://doi.org/10.1016/j.peptides.2004.09.023
N.E. Zois, E.D. Bartels, I. Hunter, B.S. Kousholt, L.H. Olsen, J.P. Goetze, Natriuretic peptides in cardiometabolic regulation and disease. Nat. Rev. Cardiol. 11(7), 403–412 (2014). https://doi.org/10.1038/nrcardio.2014.64
K.N. Pandey, Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca(2+) release, and activation of protein kinase C. Front. Mol. Neurosci. 7, 75 (2014). https://doi.org/10.3389/fnmol.2014.00075
L.R. Potter, A.R. Yoder, D.R. Flora, L.K. Antos, D.M. Dickey, Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. 191, 341–366 (2009). https://doi.org/10.1007/978-3-540-68964-5_15
D.F. Guo, Y.L. Sun, P. Hamet, T. Inagami, The angiotensin II type 1 receptor and receptor-associated proteins. Cell. Res. 11(3), 165–180 (2001). https://doi.org/10.1038/sj.cr.7290083
S. Higuchi, H. Ohtsu, H. Suzuki, H. Shirai, G.D. Frank, S. Eguchi, Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin. Sci. 112(8), 417–428 (2007). https://doi.org/10.1042/CS20060342
S. AbdAlla, H. Lother, A.M. Abdel-tawab, U. Quitterer, The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem. 276(43), 39721–39726 (2001). https://doi.org/10.1074/jbc.M105253200
L. Gendron, M.D. Payet, N. Gallo-Payet, The angiotensin type 2 receptor of angiotensin II and neuronal differentiation: from observations to mechanisms. J. Mol. Endocrinol. 31(3), 359–372 (2003)
J.D. Stockand, Vasopressin regulation of renal sodium excretion. Kidney Int. 78(9), 849–856 (2010). https://doi.org/10.1038/ki.2010.276
D.A. Ausiello, K.L. Skorecki, A.S. Verkman, J.V. Bonventre, Vasopressin signaling in kidney cells. Kidney Int. 31(2), 521–529 (1987)
J.D. Stockand, New ideas about aldosterone signaling in epithelia. American journal of physiology. Ren. Physiol. 282(4), F559–F576 (2002). https://doi.org/10.1152/ajprenal.00320.2001
M. Briet, E.L. Schiffrin, Aldosterone: effects on the kidney and cardiovascular system. Nat. Rev. Nephrol. 6(5), 261–273 (2010). https://doi.org/10.1038/nrneph.2010.30
C. Grossmann, M. Gekle, New aspects of rapid aldosterone signaling. Mol. Cell. Endocrinol. 308(1–2), 53–62 (2009). https://doi.org/10.1016/j.mce.2009.02.005
R. Dooley, B.J. Harvey, W. Thomas, Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol. Cell. Endocrinol. 350(2), 223–234 (2012). https://doi.org/10.1016/j.mce.2011.07.019
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Gaur, P., Saini, S., Vats, P. et al. Regulation, signalling and functions of hormonal peptides in pulmonary vascular remodelling during hypoxia. Endocrine 59, 466–480 (2018). https://doi.org/10.1007/s12020-018-1529-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12020-018-1529-0