Advertisement

Endocrine

, Volume 59, Issue 1, pp 191–202 | Cite as

Triiodothyronine differentially modulates the LH and FSH synthesis and secretion in male rats

  • Renata Marino Romano
  • Paula Bargi-Souza
  • Erika Lia Brunetto
  • Francemilson Goulart-Silva
  • Renato M. Salgado
  • Telma Maria Tenorio Zorn
  • Maria Tereza Nunes
Original Article

Abstract

Hypothyroidism and thyrotoxicosis produce adverse effects in male reproduction by unknown mechanisms. We investigated whether triiodothyronine (T3) modulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) synthesis/secretion, by inducing different thyroid states. In hypothyroidism, the content of Lhb and Fshb mRNAs was increased, while their association to ribosomes and the protein content were reduced and the serum LH and FSH concentrations were augmented and decreased, respectively. Thyrotoxicosis reduced Lhb mRNA and LH serum concentration, and increased Lhb mRNA translational rate. The Fshb mRNA content and its association to ribosomes were also increased, whereas FSH serum concentrations were comparable to euthyroid levels. Acute T3 treatment decreased the total content of Lhb and Fshb mRNAs, and increased their association to ribosomes, as well as the LHB and FSHB contents in secretory granules. This study shows that T3 acts on gonadotrophs, resulting in direct effects on LH and FSH synthesis/secretion of male rats, suggesting that some reproductive disorders observed in men may be associated with thyroid hormone imbalances.

Keywords

LH FSH Triiodothyronine Hypothyroidism Hyperthyroidism Posttranscriptional regulation 

Notes

Acknowledgements

The authors thank Leonice Lourenço Poyares for the excellent technical assistance.

Funding

This work was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP, (2008/50977-2, 2009/17822-8, 2013/05629-4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (305936/2013-1), Brazil. P.B.S., R.M.R., and E.L.B. are the recipients of a FAPESP fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing of interests.

Ethical approval

All procedures are in accordance to the Brazilian College of Animal Experimentation and approved by the Institute of Biomedical Sciences, University of Sao Paulo—Ethical Committee for Animal Research (protocol 029/55/02).

Supplementary material

12020_2017_1487_MOESM1_ESM.pdf (5.3 mb)
Supplemental Figure 1
12020_2017_1487_MOESM2_ESM.pdf (1.8 mb)
Supplemental Figure 2

References

  1. 1.
    P. Donnelly, C. White, Testicular dysfunction in men with primary hypothyroidism; reversal of hypogonadotrophic hypogonadism with replacement thyroxine. Clin. Endocrinol. 52(2), 197–201 (2000)CrossRefGoogle Scholar
  2. 2.
    N. Tagawa, T. Takano, S. Fukata, K. Kuma, H. Tada, Y. Izumi, Y. Kobayashi, N. Amino, Serum concentration of androstenediol and androstenediol sulfate in patients with hyperthyroidism and hypothyroidism. Endocr. J. 48(3), 345–354 (2001)PubMedCrossRefGoogle Scholar
  3. 3.
    A. Iranmanesh, G. Lizarralde, M.L. Johnson, J.D. Veldhuis, Dynamics of 24-hour endogenous cortisol secretion and clearance in primary hypothyroidism assessed before and after partial thyroid hormone replacement. J. Clin. Endocrinol. Metab. 70(1), 155–161 (1990).  https://doi.org/10.1210/jcem-70-1-155 PubMedCrossRefGoogle Scholar
  4. 4.
    J. Nielsen, R.B. Jensen, A. Juul, Increased sex hormone-binding globulin levels in children and adolescents with thyrotoxicosis. Horm. Res. Paediatr. 79, 157–61 (2013).  https://doi.org/10.1159/000348837 PubMedCrossRefGoogle Scholar
  5. 5.
    M. Pugeat, N. Nader, K. Hogeveen, G. Raverot, H. Dechaud, C. Grenot, Sex hormone-binding globulin gene expression in the liver: drugs and the metabolic syndrome. Mol. Cell. Endocrinol. 316(1), 53–59 (2010).  https://doi.org/10.1016/j.mce.2009.09.020 PubMedCrossRefGoogle Scholar
  6. 6.
    M.R. Nikoobakht, M. Aloosh, N. Nikoobakht, A.R. Mehrsay, F. Biniaz, M.A. Karjalian, The role of hypothyroidism in male infertility and erectile dysfunction. Urol. J. 9(1), 405–409 (2012)PubMedGoogle Scholar
  7. 7.
    G.E. Krassas, K. Tziomalos, F. Papadopoulou, N. Pontikides, P. Perros, Erectile dysfunction in patients with hyper- and hypothyroidism: how common and should we treat? J. Clin. Endocrinol. Metab. 93(5), 1815–1819 (2008).  https://doi.org/10.1210/jc.2007-2259 PubMedCrossRefGoogle Scholar
  8. 8.
    G.E. Krassas, F. Papadopoulou, K. Tziomalos, T. Zeginiadou, N. Pontikides, Hypothyroidism has an adverse effect on human spermatogenesis: a prospective, controlled study. Thyroid 18(12), 1255–1259 (2008).  https://doi.org/10.1089/thy.2008.0257 PubMedCrossRefGoogle Scholar
  9. 9.
    G.E. Krassas, N. Pontikides, Male reproductive function in relation with thyroid alterations. Best Pract. Res. Clin. Endocrinol. Metab. 18(2), 183–195 (2004).  https://doi.org/10.1016/j.beem.2004.03.003 PubMedCrossRefGoogle Scholar
  10. 10.
    S. Rojdmark, A. Berg, G. Kallner, Hypothalamic-pituitary-testicular axis in patients with hyperthyroidism. Horm. Res. 29(5–6), 185–190 (1988)PubMedGoogle Scholar
  11. 11.
    A.W. Meikle, The interrelationships between thyroid dysfunction and hypogonadism in men and boys. Thyroid 14(3, Suppl. 1), 17–25 (2004)CrossRefGoogle Scholar
  12. 12.
    S. La Vignera, R. Vita, R.A. Condorelli, L.M. Mongioì, S. Presti, S. Benvenga, A.E. Calogero, Impact of thyroid disease on testicular function. Endocrine 58(3), 397–407 (2017).  https://doi.org/10.1007/s12020-017-1303-8
  13. 13.
    G.E. Krassas, K. Poppe, D. Glinoer, Thyroid function and human reproductive health. Endocr. Rev. 31(5), 702–755 (2010).  https://doi.org/10.1210/er.2009-0041 PubMedCrossRefGoogle Scholar
  14. 14.
    E. Krajewska-Kulak, P. Sengupta, Thyroid function in male infertility. Front. Endocrinol. 4, 174 (2013).  https://doi.org/10.3389/fendo.2013.00174 CrossRefGoogle Scholar
  15. 15.
    R.M. Romano, P. Bargi-Souza, E.L. Brunetto, F. Goulart-Silva, M.C. Avellar, C.A. Oliveira, M.T. Nunes, Hypothyroidism in adult male rats alters posttranscriptional mechanisms of luteinizing hormone biosynthesis. Thyroid 23(4), 497–505 (2013).  https://doi.org/10.1089/thy.2011.0514 PubMedCrossRefGoogle Scholar
  16. 16.
    K. Czaplinski, R.H. Singer, Pathways for mRNA localization in the cytoplasm. Trends Biochem. Sci. 31(12), 687–693 (2006).  https://doi.org/10.1016/j.tibs.2006.10.007 PubMedCrossRefGoogle Scholar
  17. 17.
    J. Hesketh, Translation and the cytoskeleton: a mechanism for targeted protein synthesis. Mol. Biol. Rep. 19(3), 233–243 (1994)PubMedCrossRefGoogle Scholar
  18. 18.
    S. Kindler, H. Wang, D. Richter, H. Tiedge, RNA transport and local control of translation. Annu. Rev. Cell Dev. Biol. 21, 223–245 (2005).  https://doi.org/10.1146/annurev.cellbio.21.122303.120653 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Y. Funakoshi, Y. Doi, N. Hosoda, N. Uchida, M. Osawa, I. Shimada, M. Tsujimoto, T. Suzuki, T. Katada, S. Hoshino, Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev. 21(23), 3135–3148 (2007).  https://doi.org/10.1101/gad.1597707 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    J.L. Leonard, Non-genomic actions of thyroid hormone in brain development. Steroids 73(9–10), 1008–1012 (2008).  https://doi.org/10.1016/j.steroids.2007.12.016 PubMedCrossRefGoogle Scholar
  21. 21.
    F.G. Silva, G. Giannocco, M.F. Santos, M.T. Nunes, Thyroid hormone induction of actin polymerization in somatotrophs of hypothyroid rats: potential repercussions in growth hormone synthesis and secretion. Endocrinology 147(12), 5777–5785 (2006).  https://doi.org/10.1210/en.2006-0110 PubMedCrossRefGoogle Scholar
  22. 22.
    P. Bargi-Souza, R.M. Romano, M. Salgado Rde, F. Goulart-Silva, E.L. Brunetto, T.M. Zorn, M.T. Nunes, Triiodothyronine rapidly alters the TSH content and the secretory granules distribution in male rat thyrotrophs by a cytoskeleton rearrangement-independent mechanism. Endocrinology 154(12), 4908–4918 (2013).  https://doi.org/10.1210/en.2013-1508 PubMedCrossRefGoogle Scholar
  23. 23.
    R. Regazzi. Molecular Mechanisms of Exocytosis. (Landes Bioscience and Springer Science, New York, 2007)Google Scholar
  24. 24.
    W.H. Dillmann, S. Berry, N.M. Alexander, A physiological dose of triiodothyronine normalizes cardiac myosin adenosine triphosphatase activity and changes myosin isoenzyme distribution in semistarved rats. Endocrinology 112(6), 2081–2087 (1983)PubMedCrossRefGoogle Scholar
  25. 25.
    P. Chomczynski, N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162(1), 156–159 (1987).  https://doi.org/10.1006/abio.1987.9999 PubMedCrossRefGoogle Scholar
  26. 26.
    M.A. Romano, R.M. Romano, L.D. Santos, P. Wisniewski, D.A. Campos, P.B. de Souza, P. Viau, M.M. Bernardi, M.T. Nunes, C.A. de Oliveira, Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch. Toxicol. 86(4), 663–673 (2012).  https://doi.org/10.1007/s00204-011-0788-9 PubMedCrossRefGoogle Scholar
  27. 27.
    K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4), 402–408 (2001).  https://doi.org/10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  28. 28.
    M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9), e45 (2001)PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    M.J. del Prete, R. Vernal, H. Dolznig, E.W. Mullner, J.A. Garcia-Sanz, Isolation of polysome-bound mRNA from solid tissues amenable for RT-PCR and profiling experiments. RNA 13(3), 414–421 (2007).  https://doi.org/10.1261/rna.79407 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    P. Szkodziak, S. Wozniak, P. Czuczwar, E. Wozniakowska, P. Milart, A. Mroczkowski, T. Paszkowski, Infertility in the light of new scientific reports—focus on male factor. Ann. Agric. Environ. Med. 23(2), 227–230 (2016).  https://doi.org/10.5604/12321966.1203881 PubMedCrossRefGoogle Scholar
  31. 31.
    P. Patrizio, F. Sanguineti, D. Sakkas, Modern andrology: from semen analysis to postgenomic studies of the male gametes. Ann. N. Y. Acad. Sci. 1127, 59–63 (2008).  https://doi.org/10.1196/annals.1434.021 PubMedCrossRefGoogle Scholar
  32. 32.
    M. Punab, O. Poolamets, P. Paju, V. Vihljajev, K. Pomm, R. Ladva, P. Korrovits, M. Laan, Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum. Reprod. 32(1), 18–31 (2017).  https://doi.org/10.1093/humrep/dew284 PubMedGoogle Scholar
  33. 33.
    C. Krausz, Male infertility: pathogenesis and clinical diagnosis. Best Pract. Res. Clin. Endocrinol. Metab. 25(2), 271–285 (2011).  https://doi.org/10.1016/j.beem.2010.08.006 PubMedCrossRefGoogle Scholar
  34. 34.
    F. Lotti, E. Maseroli, N. Fralassi, S. Degl’Innocenti, L. Boni, E. Baldi, M. Maggi, Is thyroid hormones evaluation of clinical value in the work-up of males of infertile couples? Hum. Reprod. 31(3), 518–529 (2016).  https://doi.org/10.1093/humrep/dev338 PubMedCrossRefGoogle Scholar
  35. 35.
    R.M. Romano, S.N. Gomes, N.C. Cardoso, L. Schiessl, M.A. Romano, C.A. Oliveira, New insights for male infertility revealed by alterations in spermatic function and differential testicular expression of thyroid-related genes. Endocrine 55(2), 607–617 (2017).  https://doi.org/10.1007/s12020-016-0952-3 PubMedCrossRefGoogle Scholar
  36. 36.
    U.B. Kaiser, A. Jakubowiak, A. Steinberger, W.W. Chin, Differential effects of gonadotropin-releasing hormone (GnRH) pulse frequency on gonadotropin subunit and GnRH receptor messenger ribonucleic acid levels in vitro 1. Endocrinology 138(3), 1224–31 (1997)PubMedCrossRefGoogle Scholar
  37. 37.
    L. Nagirnaja, K. Rull, L. Uusküla, P. Hallast, M. Grigorova, M. Laan, Genomics and genetics of gonadotropin beta-subunit genes: unique FSHB and duplicated LHB/CGB loci. Mol. Cell. Endocrinol. 329(1), 4–16 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    A.W. Norman, H.L. Henry, Hormones (Academic Press, San Diego, 2014)Google Scholar
  39. 39.
    L. O’Donnell, S.J. Meachem, P.G. Stanton, R.I. McLachlan, in Chapter 21: Endocrine Regulation of Spermatogenesis. ed. by J.D. Neill, T.M. Plant, D.W. Pfaff, J.R.G. Challis, D.M. de Kretser, J.S. Richards, P.M. Wassarman. Knobil and Neill’s Physiology of Reproduction, vol 1 (Academic Press, St. Louis, 2006), pp. 1017–1069Google Scholar
  40. 40.
    K.-H. Jeong, U.B. Kaiser, in Chapter 31: Gonadotropin-Releasing Hormone Regulation of Gonadotropin Biosynthesis and Secretion. ed. by J.D. Neill, T.M. Plant, D.W. Pfaff, J.R.G. Challis, D.M. de Kretser, J.S. Richards, P.M. Wassarman (Academic Press, St. Louis, 2006), pp. 1635–1701Google Scholar
  41. 41.
    A.E. O’Connor, D.M. De Kretser, Inhibins in normal male physiology. Semin. Reprod. Med. 22(3), 177–185 (2004).  https://doi.org/10.1055/s-2004-831893 PubMedCrossRefGoogle Scholar
  42. 42.
    J.G. Pierce, T.F. Parsons, Glycoprotein hormones: structure and function. Annu. Rev. Biochem. 50(1), 465–495 (1981)PubMedCrossRefGoogle Scholar
  43. 43.
    F.J. Hayes, S. DeCruz, S.B. Seminara, P.A. Boepple, W.F. Crowley Jr., Differential regulation of gonadotropin secretion by testosterone in the human male: absence of a negative feedback effect of testosterone on follicle-stimulating hormone secretion. J. Clin. Endocrinol. Metab. 86(1), 53–58 (2001).  https://doi.org/10.1210/jcem.86.1.7101 PubMedGoogle Scholar
  44. 44.
    M.R. Laurent, G.L. Hammond, M. Blokland, F. Jardi, L. Antonio, V. Dubois, R. Khalil, S.S. Sterk, E. Gielen, B. Decallonne, G. Carmeliet, J.M. Kaufman, T. Fiers, I.T. Huhtaniemi, D. Vanderschueren, F. Claessens, Sex hormone-binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis. Sci. Rep. 6, 35539 (2016).  https://doi.org/10.1038/srep35539 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Y. Li, X. Li, H. Fan, X. Li, Y. Zhong, J. Cao, D. Yu, M. Zhang, J.G. Wen, L. Geng, Z. Suo, Age-dependent sex hormone-binding globulin expression in male rat. Ultrastruct. Pathol. 39(2), 121–130 (2015).  https://doi.org/10.3109/01913123.2015.1009222 PubMedCrossRefGoogle Scholar
  46. 46.
    P.J. Davis, F. Goglia, J.L. Leonard, Nongenomic actions of thyroid hormone. Nat. Rev. Endocrinol. 12(2), 111–121 (2016).  https://doi.org/10.1038/nrendo.2015.205 PubMedCrossRefGoogle Scholar
  47. 47.
    P. Bargi-Souza, R.M. Romano, F. Goulart-Silva, E.L. Brunetto, M.T. Nunes, T(3) rapidly regulates several steps of alpha subunit glycoprotein (CGA) synthesis and secretion in the pituitary of male rats: potential repercussions on TSH, FSH and LH secretion. Mol. Cell. Endocrinol. 409, 73–81 (2015).  https://doi.org/10.1016/j.mce.2015.04.002 PubMedCrossRefGoogle Scholar
  48. 48.
    W. Rosner, D.P. Aden, M.S. Khan, Hormonal influences on the secretion of steroid-binding proteins by a human hepatoma-derived cell line. J. Clin. Endocrinol. Metab. 59(4), 806–808 (1984).  https://doi.org/10.1210/jcem-59-4-806 PubMedCrossRefGoogle Scholar
  49. 49.
    Y. Cai, M.M. Manio, G.P. Leung, A. Xu, E.H. Tang, P.M. Vanhoutte, Thyroid hormone affects both endothelial and vascular smooth muscle cells in rat arteries. Eur. J. Pharmacol. 747, 18–28 (2015).  https://doi.org/10.1016/j.ejphar.2014.11.036 PubMedCrossRefGoogle Scholar
  50. 50.
    A.L. de Castro, A.V. Tavares, R.O. Fernandes, C. Campos, A. Conzatti, R. Siqueira, T.R. Fernandes, P.C. Schenkel, C.L. Sartorio, S. Llesuy, A. Bello-Klein, A.S. da Rosa Araujo, T3 and T4 decrease ROS levels and increase endothelial nitric oxide synthase expression in the myocardium of infarcted rats. Mol. Cell. Biochem 408(1–2), 235–243 (2015).  https://doi.org/10.1007/s11010-015-2501-4 PubMedCrossRefGoogle Scholar
  51. 51.
    D.J. Grieve, S. Fletcher, A.A. Pitsillides, K.M. Botham, J. Elliott, Effects of oral propylthiouracil treatment on nitric oxide production in rat aorta. Br. J. Pharmacol. 127(1), 1–8 (1999).  https://doi.org/10.1038/sj.bjp.0702501 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    L. Tian, L. Zhang, J. Liu, T. Guo, C. Gao, J. Ni, Effects of TSH on the function of human umbilical vein endothelial cells. J. Mol. Endocrinol. 52(2), 215–222 (2014).  https://doi.org/10.1530/jme-13-0119 PubMedCrossRefGoogle Scholar
  53. 53.
    E. Bussemaker, R. Popp, B. Fisslthaler, C.M. Larson, I. Fleming, R. Busse, R.P. Brandes, Hyperthyroidism enhances endothelium-dependent relaxation in the rat renal artery. Cardiovasc. Res. 59(1), 181–8 (2003)PubMedCrossRefGoogle Scholar
  54. 54.
    U. Förstermann, W.C. Sessa, Nitric oxide synthases: regulation and function. Eur. Heart J. 33(7), 829–837 (2012).  https://doi.org/10.1093/eurheartj/ehr304 PubMedCrossRefGoogle Scholar
  55. 55.
    R. Ramachandran, K.B. Ploug, A. Hay-Schmidt, J. Olesen, I. Jansen-Olesen, S. Gupta, Nitric oxide synthase (NOS) in the trigeminal vascular system and other brain structures related to pain in rats. Neurosci. Lett. 484(3), 192–196 (2010).  https://doi.org/10.1016/j.neulet.2010.08.050 PubMedCrossRefGoogle Scholar
  56. 56.
    M.C. Franco, V.G. Antico Arciuch, J.G. Peralta, S. Galli, D. Levisman, L.M. Lopez, L. Romorini, J.J. Poderoso, M.C. Carreras, Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase. J. Biol. Chem. 281(8), 4779–4786 (2006).  https://doi.org/10.1074/jbc.M512080200 PubMedCrossRefGoogle Scholar
  57. 57.
    T. Song, N. Hatano, T. Kambe, Y. Miyamoto, H. Ihara, H. Yamamoto, K. Sugimoto, K. Kume, F. Yamaguchi, M. Tokuda, Y. Watanabe, Nitric oxide-mediated modulation of calcium/calmodulin-dependent protein kinase II. Biochem. J. 412(2), 223–231 (2008).  https://doi.org/10.1042/bj20071195 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Physiology and Biophysics, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
  2. 2.Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil

Personalised recommendations