, Volume 59, Issue 1, pp 218–225 | Cite as

Decreased miR-17-92 cluster expression level in serum and granulocytes preceding onset of antithyroid drug-induced agranulocytosis

  • Jing Yang
  • Yuncheng Lv
  • Yi Zhang
  • Jiaoyang Li
  • Yajun Chen
  • Chang Liu
  • Jing Zhong
  • Xinhua Xiao
  • Jianghua Liu
  • Gebo Wen
Side Effects of Endocrine Treatments



We aimed to determine changes in miR-17-92 cluster expression in serum and granulocytes from patients with antithyroid drug (ATD)-induced agranulocytosis.


In this study, real-time polymerase chain reaction (PCR) was used to detect serum miR-17-92 expression levels in 20 ATD-induced agranulocytosis and 16 control patients. Importantly, dynamic changes in neutrophil counts from granulocytopenia to agranulocytosis were observed in 6 of the 20 patients. miR-17-92 expression levels in granulocytes of those six patients under the granulocytopenia condition were measured and compared with corresponding granulocyte samples after recovery. Additionally, the expression levels of these miRNAs in patients with type I or type II bone marrow characteristics were analyzed, and the correlation between miR-17-92 and serum free thyroxine level was analyzed.


We found that levels of miR-17-92 expression decreased in both serum and pre-agranulocytosis granulocytes from patients with ATD-induced agranulocytosis compared with those in serum and granulocytes from both recovered patients and control patients. However, no difference among patients with either type of bone marrow characteristics was observed, and no correlation between serum miR-17-92 and free thyroxine levels was found.


In ATD-induced agranulocytosis, expression of the miR-17-92 cluster is reduced in both serum and granulocytes, though this alteration does not correlate with bone marrow characteristics or thyroid function.


Antithyroid drug Agranulocytosis miR-17-92 cluster Granulocytes. 



This work was supported by grants from the National Natural Science Foundation of China (No. 81100560) and the Zhengxiang Scholar Program (Prof. Xiangyang Tang) of University of South China. We highly appreciate Dr. Zhenzhong Cui (Ph.D., Senior Staff Scientist of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH) for his careful review of this manuscript. We also thank all the patients for their cooperation in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

12020_2017_1481_MOESM1_ESM.tif (186 kb)
Supplementary Figure


  1. 1.
    D.S. Cooper, Antithyroid drugs. N. Engl. J. Med. 352, 905–917 (2005)CrossRefPubMedGoogle Scholar
  2. 2.
    H. Nakamura, A. Miyauchi, N. Miyawaki, J. Imagawa, Analysis of 754 cases of antithyroid drug-induced agranulocytosis over 30 years in Japan. J. Clin. Endocrinol. Metab. 98, 4776–4783 (2013)CrossRefPubMedGoogle Scholar
  3. 3.
    J. Tajiri, S. Noguchi, Antithyroid drug-induced agranulocytosis: special reference to normal white blood cell count agranulocytosis. Thyroid 14, 459–462 (2004)CrossRefPubMedGoogle Scholar
  4. 4.
    A. Johnston, J. Uetrecht, Current understanding of the mechanisms of idiosyncratic drug-induced agranulocytosis. Expert. Opin. Drug. Metab. Toxicol. 11, 243–257 (2015)CrossRefPubMedGoogle Scholar
  5. 5.
    J. Yang, J. Zhong, X.H. Xiao, L.Z. Zhou, Y.J. Chen, J.H. Liu, R.X. Cao, G.B. Wen, The relationship between bone marrow characteristics and the clinical prognosis of antithyroid drug-induced agranulocytosis. Endocr. J. 60, 185–189 (2013)CrossRefPubMedGoogle Scholar
  6. 6.
    T.S. Plantinga, P. Arts, G.H. Knarren, A.H. Mulder, I.M. Wakelkamp, A.R. Hermus, L.A. Joosten, M.G. Netea, P.H. Bisschop, W.W. De Herder, H.J. Beijers, I.J. De Bruin, C. Gilissen, J.A. Veltman, A. Hoischen, J.W. Smit, R.T. Netea-Maier, Rare NOX3 variants confer susceptibility to agranulocytosis during thyrostatic treatment of Graves’ disease. Clin. Pharmacol. Thera (2017).
  7. 7.
    P.L. Chen, S.R. Shih, P.W. Wang, Y.C. Lin, C.C. Chu, J.H. Lin, S.C. Chen, C.C. Chang, T.S. Huang, K.S. Tsai, F.Y. Tseng, C.Y. Wang, J.Y. Lu, W.Y. Chiu, C.C. Chang, Y.H. Chen, Y.T. Chen, C.S. Fann, W.S. Yang, T.C. Chang, Genetic determinants of antithyroid drug-induced agranulocytosis by human leukocyte antigen genotyping and genome-wide association study. Nat. Commun. 6, 7633 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    P. Hallberg, N. Eriksson, L. Ibanez, E. Bondon-Guitton, R. Kreutz, A. Carvajal, M.I. Lucena, E.S. Ponce, M. Molokhia, J. Martin, T. Axelsson, Q.Y. Yue, P.K. Magnusson, M. Wadelius, D.a.C.C. Eu, Genetic variants associated with antithyroid drug-induced agranulocytosis: a genome-wide association study in a European population. Lancet Diabetes Endocrinol. 4, 507–516 (2016)CrossRefPubMedGoogle Scholar
  9. 9.
    V. Ambros, The functions of animal microRNAs. Nature 431, 350–355 (2004)CrossRefPubMedGoogle Scholar
  10. 10.
    Q. Zou, Y. Liang, H. Luo, W. Yu, miRNA-mediated RNAa by targeting enhancers. Adv. Exp. Med. Biol. 983, 113–125 (2017)CrossRefPubMedGoogle Scholar
  11. 11.
    H. Liang, F. Gong, S. Zhang, C.Y. Zhang, K. Zen, X. Chen, The origin, function, and diagnostic potential of extracellular microRNAs in human body fluids. Wiley interdisciplinary reviews. RNA 5, 285–300 (2014)PubMedGoogle Scholar
  12. 12.
    M.A. Cortez, G.A. Calin, MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert. Opin. Biol. Ther. 9, 703–711 (2009)CrossRefPubMedGoogle Scholar
  13. 13.
    V. Ghai, K. Wang, Recent progress toward the use of circulating microRNAs as clinical biomarkers. Arch. Toxicol. 90, 2959–2978 (2016)CrossRefPubMedGoogle Scholar
  14. 14.
    L. He, J.M. Thomson, M.T. Hemann, E. Hernando-Monge, D. Mu, S. Goodson, S. Powers, C. Cordon-Cardo, S.W. Lowe, G.J. Hannon, S.M. Hammond, A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    E. Mogilyansky, I. Rigoutsos, The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell. Death Differ. 20, 1603–1614 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    S. Radom-Aizik, F. Zaldivar Jr., S. Oliver, P. Galassetti, D.M. Cooper, Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes. J. Appl. Physiol. 109, 252–261 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    M.N. Poy, L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma, P.E. Macdonald, S. Pfeffer, T. Tuschl, N. Rajewsky, P. Rorsman, M. Stoffel, A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004)CrossRefPubMedGoogle Scholar
  18. 18.
    A. Ota, H. Tagawa, S. Karnan, S. Tsuzuki, A. Karpas, S. Kira, Y. Yoshida, M. Seto, Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004)CrossRefPubMedGoogle Scholar
  19. 19.
    S. Mi, Z. Li, P. Chen, C. He, D. Cao, A. Elkahloun, J. Lu, L.A. Pelloso, M. Wunderlich, H. Huang, R.T. Luo, M. Sun, M. He, M.B. Neilly, N.J. Zeleznik-Le, M.J. Thirman, J.C. Mulloy, P.P. Liu, J.D. Rowley, J. Chen, Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc. Natl. Acad. Sci. USA 107, 3710–3715 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    L. Venturini, K. Battmer, M. Castoldi, B. Schultheis, A. Hochhaus, M.U. Muckenthaler, A. Ganser, M. Eder, M. Scherr, Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 109, 4399–4405 (2007)CrossRefPubMedGoogle Scholar
  21. 21.
    C.P. Concepcion, C. Bonetti, A. Ventura, The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J. 18, 262–267 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    M. Ji, E. Rao, H. Ramachandrareddy, Y. Shen, C. Jiang, J. Chen, Y. Hu, A. Rizzino, W.C. Chan, K. Fu, T.W. Mckeithan, The miR-17-92 microRNA cluster is regulated by multiple mechanisms in B-cell malignancies. Am. J. Pathol. 179, 1645–1656 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    A. Ventura, A.G. Young, M.M. Winslow, L. Lintault, A. Meissner, S.J. Erkeland, J. Newman, R.T. Bronson, D. Crowley, J.R. Stone, R. Jaenisch, P.A. Sharp, T. Jacks, Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Y. Li, A. Deutzmann, P.S. Choi, A.C. Fan, D.W. Felsher, BIM mediates oncogene inactivation-induced apoptosis in multiple transgenic mouse models of acute lymphoblastic leukemia. Oncotarget 7, 26926–26934 (2016)PubMedPubMedCentralGoogle Scholar
  25. 25.
    L. Hong, M. Lai, M. Chen, C. Xie, R. Liao, Y.J. Kang, C. Xiao, W.Y. Hu, J. Han, P. Sun, The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-induced senescence. Cancer Res. 70, 8547–8557 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    X. Zhang, Y. Chen, P. Zhao, L. Zang, Z. Zhang, X. Wang, MicroRNA-19a functions as an oncogene by regulating PTEN/AKT/pAKT pathway in myeloma. Leuk. Lymphoma 58, 932–940 (2017)CrossRefPubMedGoogle Scholar
  27. 27.
    M. Dal Bo, R. Bomben, L. Hernandez, V. Gattei, The MYC/miR-17-92 axis in lymphoproliferative disorders: a common pathway with therapeutic potential. Oncotarget 6, 19381–19392 (2015)Google Scholar
  28. 28.
    G. Zhang, X. Liu, W. Wang, Y. Cai, S. Li, Q. Chen, M. Liao, M. Zhang, G. Zeng, B. Zhou, C.G. Feng, X. Chen, Down-regulation of miR-20a-5p triggers cell apoptosis to facilitate mycobacterial clearance through targeting JNK2 in human macrophages. Cell. Cycle 15, 2527–2538 (2016)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Jing Yang
    • 1
  • Yuncheng Lv
    • 2
  • Yi Zhang
    • 1
  • Jiaoyang Li
    • 1
  • Yajun Chen
    • 3
  • Chang Liu
    • 4
  • Jing Zhong
    • 5
  • Xinhua Xiao
    • 1
  • Jianghua Liu
    • 1
  • Gebo Wen
    • 1
  1. 1.Department of Metabolism & Endocrinology, the First Affiliated Hospital of University of South ChinaHengyangChina
  2. 2.Clinical Anatomy & Reproductive Medicine Application InstituteUniversity of South ChinaHengyangChina
  3. 3.Department of Metabolism & Endocrinologythe Second Affiliated Hospital of University of South ChinaHengyangChina
  4. 4.Department of Metabolism & Endocrinologythe Chenzhou Affiliated Hospital of University of South ChinaChengzhouChina
  5. 5.Department of Clinical Researchthe First Affiliated Hospital of University of South ChinaHengyangChina

Personalised recommendations