, Volume 60, Issue 2, pp 219–223 | Cite as

Diagnostic work-up in steroid myopathy

  • Marco Alessandro Minetto
  • Valentina D’Angelo
  • Emanuela Arvat
  • Santosh Kesari
Mini Review



Steroid myopathy is a well-known sign of endogenous Cushing’s syndrome as well as a side effect of glucocorticoid administration. The clinical finding of muscle weakness and the clinical inspection of the muscle size are the most commonly used diagnostic tools, sometimes in combination with needle electromyography, but there are no means to detect the myopathy before the appearance of clinical or electrodiagnostic signs. Until now, no guidelines have been produced for a disease-specific evaluation of muscle impairment in patients with Cushing’s syndrome.


We reviewed the measurement properties and limitations of the following tools that are currently adopted in clinical research and routine care for diagnosis and monitoring of steroid myopathy: muscle strength assessment; needle biopsy; intramuscular and surface electromyography; laboratory assays; muscle mass assessments (through bioelectrical impedance analysis, dual-energy X-ray absorptiometry, and computed tomography).


We suggest that the management of steroid myopathy patients in clinical research and practice would benefit from a multidisciplinary approach based on the combined assessment of muscle mass, strength, and performance. However, further studies are required to establish an operational definition of steroid myopathy and to identify population-specific criteria for diagnosis of the myopathic process.


Glucocorticoids Steroid myopathy Sarcopenia Muscle weakness Muscle atrophy 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    M.A. Minetto, F. Lanfranco, G. Motta, S. Allasia, E. Arvat, G. D’Antona, Steroid myopathy: some unresolved issues. J. Endocrinol. Invest. 34, 370–375 (2011)CrossRefPubMedGoogle Scholar
  2. 2.
    O. Schakman, S. Kalista, C. Barbé, A. Loumaye, J.P. Thisse, Glucocorticoid-induced skeletal muscle atrophy. Int. J. Biochem. Cell Biol. 45, 2163–2172 (2013)CrossRefPubMedGoogle Scholar
  3. 3.
    R.M. Pereira, J. Freire de Carvalho, Glucocorticoid-induced myopathy. Joint Bone Spine 78, 41–44 (2011)CrossRefPubMedGoogle Scholar
  4. 4.
    M.A. Minetto, A. Rainoldi, J.F. Jabre, The clinical use of macro and surface electromyography in diagnosis and follow-up of endocrine and drug-induced myopathies. J. Endocrinol. Invest. 30, 791–796 (2007)CrossRefPubMedGoogle Scholar
  5. 5.
    A.A. Sapega, Muscle performance evaluation in orthopaedic practice. J. Bone Joint Surg. Am. 72, 1562–1574 (1990)CrossRefPubMedGoogle Scholar
  6. 6.
    R.W. Bohannon, Measuring knee extensor muscle strength. Am. J. Phys. Med. Rehabil. 80, 13–18 (2001)CrossRefPubMedGoogle Scholar
  7. 7.
    N.A. Maffiuletti, Assessment of hip and knee muscle function in orthopaedic practice and research. J. Bone Joint Surg. Am. 92, 220–229 (2010)CrossRefPubMedGoogle Scholar
  8. 8.
    A.W. Andrews, M.W. Thomas, R.W. Bohannon, Normative values for isometric muscle force measurements obtained with hand-held dynamometers. Phys. Ther. 76, 248–259 (1996)CrossRefPubMedGoogle Scholar
  9. 9.
    R.W. Bohannon, Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch. Phys. Med. Rehabil. 78, 26–32 (1997)CrossRefPubMedGoogle Scholar
  10. 10.
    A.A. Khaleeli, R.H. Edwards, K. Gohil, G. McPhail, M.J. Rennie, J. Round, E.J. Ross, Corticosteroid myopathy: a clinical and pathological study. Clin. Endocrinol. (Oxf.). 8, 155–166 (1983)CrossRefGoogle Scholar
  11. 11.
    A.A. Khaleeli, D.J. Betteridge, R.H. Edwards, J.M. Round, E.J. Ross, Effect of treatment of Cushing’s syndrome on skeletal muscle structure and function. Clin. Endocrinol. (Oxf.). 19, 547–556 (1983)CrossRefPubMedGoogle Scholar
  12. 12.
    S. Baudry, F. Lanfranco, R. Merletti, J. Duchateau, M.A. Minetto, Effects of short-term dexamethasone administration on corticospinal excitability. Med. Sci. Sports Exerc. 46, 695–701 (2014)CrossRefPubMedGoogle Scholar
  13. 13.
    F. Kanda, S. Okuda, T. Matsushita, K. Takatani, K.I. Kimura, K. Chihara, Steroid myopathy: pathogenesis and effects of growth hormone and insulin-like growth factor-I administration. Horm. Res. 56(Suppl 1), 24–28 (2001)PubMedGoogle Scholar
  14. 14.
    D. Dumitru. Myopathies. in Electrodiagnostic Medicine, ed. by D. Dumitru (Hanley & Belfus: Philadelphia, 1995), pp. 1031–1129Google Scholar
  15. 15.
    G. D’Antona, M.A. Pellegrino, R. Adami, R. Rossi, C.N. Carlizzi, M. Canepari, B. Saltin, R. Bottinelli, The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J. Physiol. 552, 499–511 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    M.A. Weber, H. Krakowski-Roosen, L. Schröder, R. Kinscherf, M. Krix, A. Kopp-Schneider, M. Essig, P. Bachert, H.U. Kauczor, W. Hildebrandt, Morphology, metabolism, microcirculation, and strength of skeletal muscles in cancer-related cachexia. Acta Oncol. 48, 116–124 (2009)CrossRefPubMedGoogle Scholar
  17. 17.
    M. Zamboni, A.P. Rossi, F. Corzato, C. Bambace, G. Mazzali, F. Fantin, Sarcopenia, cachexia and congestive heart failure in the elderly. Endocr. Metab. Immune Disord. Drug Targets 13, 58–67 (2013)CrossRefPubMedGoogle Scholar
  18. 18.
    S.D. Harridge, R. Bottinelli, M. Canepari, M.A. Pellegrino, C. Reggiani, M. Esbjörnsson, B. Saltin, Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflug. Arch. 432, 913–920 (1996)CrossRefGoogle Scholar
  19. 19.
    M.A. Minetto, R. Qaisar, V. Agoni, G. Motta, E. Longa, D. Miotti, M.A. Pellegrino, R. Bottinelli, Quantitative and qualitative adaptations of muscle fibers to glucocorticoids. Muscle Nerve 52, 631–639 (2015)CrossRefPubMedGoogle Scholar
  20. 20.
    P. Hanson, A. Dive, J.M. Brucher, M. Bisteau, M. Dangoisse, T. Deltombe, Acute corticosteroid myopathy in intensive care patients. Muscle Nerve 20, 1371–1380 (1997)CrossRefPubMedGoogle Scholar
  21. 21.
    M.A. Minetto, A. Botter, F. Lanfranco, M. Baldi, E. Ghigo, E. Arvat, Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects. J. Clin. Endocrinol. Metab. 95, 1663–1671 (2010)CrossRefPubMedGoogle Scholar
  22. 22.
    M.A. Minetto, F. Lanfranco, A. Botter, G. Motta, G. Mengozzi, R. Giordano, A. Picu, E. Ghigo, E. Arvat, Do muscle fiber conduction slowing and decreased levels of circulating muscle proteins represent sensitive markers of steroid myopathy? A pilot study in Cushing’s disease. Eur. J. Endocrinol. 164, 985–993 (2011)CrossRefPubMedGoogle Scholar
  23. 23.
    P.J. Blijham, H.J. ter Laak, H.J. Schelhaas, B.G. van Engelen, D.F. Stegeman, M.J. Zwarts, Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders. J. Appl. Physiol. (1985) 100, 1837–1841 (2006)CrossRefPubMedGoogle Scholar
  24. 24.
    M. Elia, A. Carter, S. Bacon, C.G. Winearls, R. Smith, Clinical usefulness of urinary 3-methylhistidine excretion in indicating muscle protein breakdown. Br. Med. J. (Clin. Res. Ed.). 282, 351–354 (1981)CrossRefGoogle Scholar
  25. 25.
    N. Aranibar, J.D. Vassallo, J. Rathmacher, S. Stryker, Y. Zhang, J. Dai, E.B. Janovitz, D. Robertson, M. Reily, L. Lowe-Krentz, L. Lehman-McKeeman, Identification of 1- and 3-methylhistidine as biomarkers of skeletal muscle toxicity by nuclear magnetic resonance-based metabolic profiling. Anal. Biochem. 410, 84–91 (2011)CrossRefPubMedGoogle Scholar
  26. 26.
    H.C. Lukaski, W.W. Bolonchuk, C.B. Hall, W.A. Siders, Validation of tetrapolar bioelectrical impedance method to assess human body composition. J. Appl. Physiol. (1985) 60, 1327–1332 (1986)CrossRefGoogle Scholar
  27. 27.
    D.L. Kendler, J.L. Borges, R.A. Fielding, A. Itabashi, D. Krueger, K. Mulligan, B.M. Camargos, B. Sabowitz, C.H. Wu, E.W. Yu, J. Shepherd, The official positions of the international society for clinical densitometry: Indications of use and reporting of DXA for body composition. J. Clin. Densitom. 16, 496–507 (2013)CrossRefPubMedGoogle Scholar
  28. 28.
    I. Janssen, S.B. Heymsfield, R.N. Baumgartner, R. Ross, Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 1985 89, 465–471 (2000)CrossRefPubMedGoogle Scholar
  29. 29.
    G. Sergi, M. De Rui, N. Veronese, F. Bolzetta, L. Berton, S. Carraro, G. Bano, A. Coin, E. Manzato, E. Perissinotto, Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 34, 667–673 (2015)CrossRefPubMedGoogle Scholar
  30. 30.
    R.N. Baumgartner, K.M. Koehler, D. Gallagher, L. Romero, S.B. Heymsfield, R.R. Ross, P.J. Garry, R.D. Lindeman, Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 147, 755–763 (1998)CrossRefPubMedGoogle Scholar
  31. 31.
    I. Janssen, S.B. Heymsfield, Z.M. Wang, R. Ross, Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J. Appl. Physiol. (1985) 89, 81–88 (2000)CrossRefGoogle Scholar
  32. 32.
    I. Janssen, R.N. Baumgartner, R. Ross, I.H. Rosenberg, R. Roubenoff, Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am. J. Epidemiol. 159, 413–421 (2004)CrossRefPubMedGoogle Scholar
  33. 33.
    P.M. Cawthon, K.W. Peters, M.D. Shardell, R.R. McLean, T.T. Dam, A.M. Kenny, M.S. Fragala, T.B. Harris, D.P. Kiel, J.M. Guralnik, L. Ferrucci, S.B. Kritchevsky, M.T. Vassileva, S.A. Studenski, D.E. Alley, Cutpoints for low appendicular lean mass that identify older adults with clinically significant weakness. J. Gerontol. A. Biol. Sci. Med. Sci. 69, 567–575 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    M.V. Narici, N. Maffulli, Sarcopenia: characteristics, mechanisms and functional significance. Br. Med. Bull. 95, 139–159 (2010)CrossRefPubMedGoogle Scholar
  35. 35.
    D. Gallagher, M. Visser, R.E. De Meersman, D. Sepúlveda, R.N. Baumgartner, R.N. Pierson, T. Harris, S.B. Heymsfield, Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J. Appl. Physiol. (1985) 83, 229–239 (1997)CrossRefGoogle Scholar
  36. 36.
    W.K. Mitchell, J. Williams, P. Atherton, M. Larvin, J. Lund, M. Narici, Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 3, 260 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    J.R. Moon, Body composition in athletes and sports nutrition: an examination of the bioimpedance analysis technique. Eur. J. Clin. Nutr. 67(Suppl 1), S54–S59 (2013)CrossRefPubMedGoogle Scholar
  38. 38.
    S.A. Kemink, J.T. Frijns, A.R. Hermus, G.F. Pieters, A.G. Smals, W.D. van Marken Lichtenbelt, Body composition determined by six different methods in women bilaterally adrenalectomized for treatment of Cushing’s disease. J. Clin. Endocrinol. Metab. 84, 3991–3999 (1999)PubMedGoogle Scholar
  39. 39.
    M. Pirlich, H. Biering, H. Gerl, M. Ventz, B. Schmidt, S. Ertl, H. Lochs, Loss of body cell mass in Cushing’s syndrome: effect of treatment. J. Clin. Endocrinol. Metab. 87, 1078–1084 (2002)PubMedGoogle Scholar
  40. 40.
    B.S. Miller, K.M. Ignatoski, S. Daignault, C. Lindland, P.G. Gauger, G.M. Doherty, S.C. Wang; University of Michigan Analytical Morphomics Group, A quantitative tool to assess degree of sarcopenia objectively in patients with hypercortisolism. Surgery 150, 1178–1185 (2011)CrossRefPubMedGoogle Scholar
  41. 41.
    S. Lovitt, F.A. Marden, B. Gundogdu, M.L. Ostrowski, MRI in myopathy. Neurol. Clin. 22, 509–538 (2004)CrossRefPubMedGoogle Scholar
  42. 42.
    E. Zoico, F. Corzato, C. Bambace, A.P. Rossi, R. Micciolo, S. Cinti, T.B. Harris, M. Zamboni, Myosteatosis and myofibrosis: relationship with aging, inflammation and insulin resistance. Arch. Gerontol. Geriatr. 57, 411–416 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    I.M. Arts, S. Pillen, H.J. Schelhaas, S. Overeem, M.J. Zwarts, Normal values for quantitative muscle ultrasonography in adults. Muscle Nerve 41, 32–41 (2010)CrossRefPubMedGoogle Scholar
  44. 44.
    M.S. Cartwright, S. Demar, L.P. Griffin, N. Balakrishnan, J.M. Harris, F.O. Walker, Validity and reliability of nerve and muscle ultrasound. Muscle Nerve 47, 515–521 (2013)CrossRefPubMedGoogle Scholar
  45. 45.
    S. Pillen, I.M. Arts, M.J. Zwarts, Muscle ultrasound in neuromuscular disorders. Muscle Nerve 37, 679–693 (2008)CrossRefPubMedGoogle Scholar
  46. 46.
    M.D. de Boer, O.R. Seynnes, P.E. di Prampero, R. Pisot, I.B. Mekjavić, G. Biolo, M.V. Narici, Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles. Eur. J. Appl. Physiol. 104, 401–407 (2008)CrossRefPubMedGoogle Scholar
  47. 47.
    R.A. Atkinson, U. Srinivas-Shankar, S.A. Roberts, M.J. Connolly, J.E. Adams, J.A. Oldham, F.C. Wu, O.R. Seynnes, C.E. Stewart, C.N. Maganaris, M.V. Narici, Effects of testosterone on skeletal muscle architecture in intermediate-frail and frail elderly men. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 1215–1219 (2010)CrossRefPubMedGoogle Scholar
  48. 48.
    M.A. Minetto, C. Caresio, T. Menapace, A. Hajdarevic, A. Marchini, F. Molinari, N.A. Maffiuletti, Ultrasound-based detection of low muscle mass for diagnosis of sarcopenia in older adults. PM. R. 8, 453–462 (2016)CrossRefPubMedGoogle Scholar
  49. 49.
    A.J. Cruz-Jentoft, J.P. Baeyens, J.M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F.C. Martin, J.P. Michel, Y. Rolland, S.M. Schneider, E. Topinková, M. Vandewoude, M. Zamboni, European Working Group on Sarcopenia in Older People, Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in older people. Age Ageing 39, 412–423 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    S.A. Studenski, K.W. Peters, D.E. Alley, P.M. Cawthon, R.R. McLean, T.B. Harris, L. Ferrucci, J.M. Guralnik, M.S. Fragala, A.M. Kenny, D.P. Kiel, S.B. Kritchevsky, M.D. Shardell, T.T. Dam, M.T. Vassileva, The FNIH sarcopenia project: rationale, study description, recommendations, and final estimates. J. Gerontol. A. Biol. Sci. Med. Sci. 69, 547–558 (2014)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetology and Metabolism, Department of Medical SciencesUniversity of TurinTurinItaly
  2. 2.Division of Physical Medicine and Rehabilitation, Department of Surgical SciencesUniversity of TurinTurinItaly
  3. 3.Oncological Endocrinology Unit, Department of Medical SciencesUniversity of TurinTurinItaly
  4. 4.Department of Translational Neurosciences and NeurotherapeuticsJohn Wayne Cancer Institute and Pacific Neuroscience InstituteSanta MonicaUSA

Personalised recommendations