, Volume 58, Issue 3, pp 488–494 | Cite as

Real-time elastography in autonomously functioning thyroid nodules: relationship with TSH levels, scintigraphy, and ultrasound patterns

  • Pierpaolo TrimboliEmail author
  • Gaetano Paone
  • Maria Chiara Zatelli
  • Luca Ceriani
  • Luca Giovanella
Original Article



Real-time elastography has been proposed to increase the sensitivity of ultrasound and improve the detection of thyroid nodules at risk of malignancy. To date sparse data on real-time elastography assessment of autonomously functioning thyroid nodules exist. Here, we investigated the potential role of real-time elastography in autonomously functioning thyroid nodule assessment. Specifically, the correlation between serum hormones and real-time elastography score, as well as other clinical and ultrasound features, was analyzed.


Patients with autonomously functioning thyroid nodule identified by I-123 scintigraphy from September 2015 to July 2016 and undergoing ultrasound, real-time elastography, and thyroid function evaluation were selected. All autonomously functioning thyroid nodule were classified as RTE I (prevalence of red or green color with blue in up to 25% of the nodule area), RTE II (blue in 25–75%), or RTE III (blue in more than 75%). The association between suppressed thyroid stimulating hormone and patient’s age, nodule’s size, ultrasound presentation, and real-time elastography scoring was analyzed by Odds Ratio in univariate fashion and multivariate model.


A number of 47 subjects with single autonomously functioning thyroid nodule were enrolled. Median age of 63 years, median size of 2.0 cm, and suppressed thyroid stimulating hormone levels in 32% of cases were found. Those nodules classified by ultrasound at high risk underwent fine-needle aspiration cytology and cancer was excluded. At real-time elastography evaluation, a 45% of autonomously functioning thyroid nodule had a hard appearance (RTE III) and had thyroid stimulating hormone significantly lower than the other (p < 0.0001). A model of multivariate logistic regression including nodule’s size, ultrasound characteristics, and elastographic presentation showed that only RTE III was significantly associated with suppressed thyroid stimulating hormone (Odds Ratio of 50).


Autonomously functioning thyroid nodule may have variable elasticity at real-time elastography examination, being hard score associated with reduced/suppressed thyroid stimulating hormone. For clinical practice, the presence of autonomously functioning thyroid nodule should be considered in patients with hard lesions. Also, as quoted by the most recent ATA guidelines, elastography should not be accounted for risk stratification of thyroid nodules.


Autonomously functioning thyroid nodule Ultrasonography Elastography Scintigraphy 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    H. Gharib, E. Papini, J.R. Garber, D.S. Duick, R.M. Harrell, L. Hegedüs, R. Paschke, R. Valcavi, P. Vitti; AACE/ACE/AME Task Force on Thyroid Nodules, American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi Medical Guidelines for clinical practice for the diagnosis and management of thyroid nodules 2016. Endocr. Pract. 22, 622–639 (2016)CrossRefPubMedGoogle Scholar
  2. 2.
    B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26, 1–133 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    L. Solbiati, V. Osti, L. Cova, M. Tonolini, Ultrasound of thyroid, parathyroid glands and neck lymph nodes. Eur. Radiol. 11, 2411–2424 (2001)CrossRefPubMedGoogle Scholar
  4. 4.
    E.K. Kim, C.S. Park, W.Y. Chung, K.K. Oh, D.I. Kim, J.T. Lee, H.S. Yoo, New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. Am. J. Roentgenol. 178, 687–691 (2002)CrossRefGoogle Scholar
  5. 5.
    A. Lyshchik, T. Higashi, R. Asato, S. Tanaka, J. Ito, J.J. Mai, C. Pellot-Barakat, M.F. Insana, A.B. Brill, T. Saga, M. Hiraoka, K. Togashi, Thyroid gland tumor diagnosis at US elastography. Radiology 237, 202–211 (2005)CrossRefPubMedGoogle Scholar
  6. 6.
    M. Friedrich-Rust, A. Sperber, K. Holzer, J. Diener, F. Grünwald, K. Badenhoop, S. Weber, S. Kriener, E. Herrmann, W.O. Bechstein, S. Zeuzem, J. Bojunga, Real-time elastography and contrast-enhanced ultrasound for the assessment of thyroid nodules. Exp. Clin. Endocrinol. Diabetes 118, 602–609 (2010)CrossRefPubMedGoogle Scholar
  7. 7.
    P. Trimboli, R. Guglielmi, S. Monti, I. Misischi, F. Graziano, N. Nasrollah, S. Amendola, S.N. Morgante, M.G. Deiana, S. Valabrega, V. Toscano, E. Papini, Ultrasound sensitivity for thyroid malignancy is increased by real-time elastography: a prospective multicenter study. J. Clin. Endocrinol. Metab. 97, 4524–4530 (2012)CrossRefPubMedGoogle Scholar
  8. 8.
    J. Meller, W. Becker, Scintigraphic evaluation of functional thyroidal autonomy. Exp. Clin. Endocrinol. Diabetes 106, S45–S51 (1998)CrossRefPubMedGoogle Scholar
  9. 9.
    J. Meller, W. Becker, The continuing importance of thyroid scintigraphy in the era of high-resolution ultrasound. Eur. J. Nucl. Med. Mol. Imaging 29, S425–S438 (2002)CrossRefPubMedGoogle Scholar
  10. 10.
    L. Hegedüs, Clinical practice. The thyroid nodule. N. Engl. J. Med. 351, 1764–1771 (2004)CrossRefPubMedGoogle Scholar
  11. 11.
    C. Happel, P.N. Truong, B. Bockisch, K. Zaplatnikov, W.T. Kranert, H. Korkusuz, H. Ackermann, F. Grünwald, Colour-coded duplex-sonography versus scintigraphy. Can scintigraphy be replaced by sonography for diagnosis of functional thyroid autonomy? Nuklearmedizin 52, 186–191 (2013)CrossRefPubMedGoogle Scholar
  12. 12.
    A. Camera, F. Magri, R. Fonte, L. Villani, M.G. Della Porta, V. Fregoni, L.L. Manna, L. Chiovato, Burkitt-like lymphoma infiltrating a hyperfunctioning thyroid adenoma and presenting as a hot nodule. Thyroid 20, 1033–1036 (2010)CrossRefPubMedGoogle Scholar
  13. 13.
    N. Brusca, C. Virili, M. Cellini, S. Capriello, L. Gargano, R. Salvatori, M. Centanni, M.G. Santaguida, Early detection of biochemically occult autonomous thyroid nodules. Eur. J. Endocrinol. 175, 615–622 (2016)CrossRefPubMedGoogle Scholar
  14. 14.
    G. Treglia, P. Trimboli, F.A. Verburg, M. Luster, L. Giovanella, Prevalence of normal TSH value among patients with autonomously functioning thyroid nodule. Eur. J. Clin. Invest. 45, 739–744 (2015)CrossRefPubMedGoogle Scholar
  15. 15.
    M. Bongiovanni, P. Trimboli, E.D. Rossi, G. Fadda, A. Nobile, L. Giovanella, High-yield thyroid fine-needle aspiration cytology: an update focused on ancillary techniques improving its accuracy. Eur. J. Endocrinol. 174, R53–R63 (2016)CrossRefPubMedGoogle Scholar
  16. 16.
    M. Ruhlmann, V. Stebner, R. Görges, J. Farahati, D. Simon, A. Bockisch, S. Rosenbaum-Krumme, J. Nagarajah, Diagnosis of hyperfunctioning thyroid nodules. Impact of US-elastography. Nuklearmedizin 53, 173–177 (2014)CrossRefPubMedGoogle Scholar
  17. 17.
    M. Etzel, C. Happel, F. von Müller, H. Ackermann, J. Bojunga, F. Grünwald, Palpation and elastography of thyroid nodules in comparison. Nuklearmedizin 52, 97–100 (2013)CrossRefPubMedGoogle Scholar
  18. 18.
    H. Schicha, M. Hellmich, W. Lehmacher, W. Eschner, M. Schmidt, C. Kobe, O. Schober, M. Dietlein, Should all patients with thyroid nodules ≥1 cm undergo aspiration biopsy? Nuklearmedizin 48, 79–83 (2009)PubMedGoogle Scholar
  19. 19.
    R. Chami, R. Moreno-Reyes, B. Corvilain, TSH measurement is not an appropriate screening test for autonomous functioning thyroid nodules: a retrospective study of 368 patients. Eur. J. Endocrinol. 170, 593–599 (2014)CrossRefPubMedGoogle Scholar
  20. 20.
    M. Andersson, I. Aeberli, N. Wust, A.M. Piacenza, T. Bucher, I. Henschen, M. Haldimann, M.B. Zimmermann, The Swiss iodized salt program provides adequate iodine for school children and pregnant women, but weaning infants not receiving iodine-containing complementary foods as well as their mothers are iodine deficient. J. Clin. Endocrinol. Metab. 95, 5217–5224 (2010)CrossRefPubMedGoogle Scholar
  21. 21.
    L. Giovanella, F. D’Aurizio, A. Campenni’, R.M. Ruggeri, S. Baldari, F.A. Verburg, P. Trimboli, L. Ceriani, Searching for the most effective thyrotropin (TSH) threshold to rule-out autonomously functioning thyroid nodules in iodine deficient regions. Endocrine 54, 757–761 (2016)CrossRefPubMedGoogle Scholar
  22. 22.
    M. Heinisch, G. Kumnig, D. Asböck, P. Mikosch, H.J. Gallowitsch, E. Kresnik, I. Gomez, O. Unterweger, P. Lind, Goiter prevalence and iodine urinary excretion in a formerly iodine deficient region after introduction of statutory iodization of common salt. Thyroid 12, 809–814 (2002)CrossRefPubMedGoogle Scholar
  23. 23.
    A.C. van de Ven, R.T. Netea-Maier, H.A. Ross, T.A. van Herwaarden, S. Holewijn, J. de Graaf, B.L. Kiemeney, D. van Tienoven, J.F. Wetzels, J.W. Smit, F.C. Sweep, A.R. Hermus, M. den Heijer, Longitudinal trends in thyroid function in relation to iodine intake: ongoing changes of thyroid function despite adequate current iodine status. Eur. J. Endocrinol. 170, 49–54 (2013)PubMedGoogle Scholar
  24. 24.
    F.M. Hilty, M.B. Zimmermann, Schoolchildren in the principality of liechtenstein are mildly iodine deficient. Public Health Nutr. 14, 1312–1314 (2011)CrossRefPubMedGoogle Scholar
  25. 25.
    F. Magri, S. Chytiris, V. Capelli, M. Gaiti, F. Zerbini, R. Carrara, A. Malovini, M. Rotondi, R. Bellazzi, L. Chiovato, Comparison of elastographic strain index and thyroid fine-needle aspiration cytology in 631 thyroid nodules. J. Clin. Endocrinol. Metab. 98, 4790–4797 (2013)CrossRefPubMedGoogle Scholar
  26. 26.
    M. Andrioli, L. Persani, Elastographic techniques of thyroid gland: current status. Endocrine 46, 455–461 (2014)CrossRefPubMedGoogle Scholar
  27. 27.
    P. Trimboli, G. Treglia, R. Sadeghi, F. Romanelli, L. Giovanella, Reliability of real-time elastography to diagnose thyroid nodules previously read at FNAC as indeterminate: a meta-analysis. Endocrine 50, 335–343 (2015)CrossRefPubMedGoogle Scholar
  28. 28.
    B. Corvilain, The natural history of thyroid autonomy and hot nodules. Ann. Endocrinol. 64, 17–22 (2003)Google Scholar
  29. 29.
    D. Cosgrove, F. Piscaglia, J. Bamber, J. Bojunga, J.M. Correas, O.H. Gilja, A.S. Klauser, I. Sporea, F. Calliada, V. Cantisani, M. D’Onofrio, E.E. Drakonaki, M. Fink, M. Friedrich-Rust, J. Fromageau, R.F. Havre, C. Jenssen, R. Ohlinger, A. Săftoiu, F. Schaefer, C.F. Dietrich, EFSUMB: EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med. 34, 238–253 (2013)CrossRefPubMedGoogle Scholar
  30. 30.
    V. Cantisani, P. Lodise, H. Grazhdani, E. Mancuso, E. Maggini, G. Di Rocco, F. D’Ambrosio, F. Calliada, A. Redler, P. Ricci, C. Catalano, Ultrasound elastography in the evaluation of thyroid pathology. Current status. Eur. J. Radiol. 83, 420–428 (2014)CrossRefPubMedGoogle Scholar
  31. 31.
    D. Cosgrove, R. Barr, J. Bojunga, V. Cantisani, M.C. Chammas, M. Dighe, S. Vinayak, J.M. Xu, C.F. Dietrich, WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 4. Thyroid. Ultrasound Med. Biol. 43, 4–26 (2017)CrossRefPubMedGoogle Scholar
  32. 32.
    H. Grazhdani, V. Cantisani, P. Lodise, G. Di Rocco, M.C. Proietto, E. Fioravanti, A. Rubini, A. Redler, Prospective evaluation of acoustic radiation force impulse technology in the differentiation of thyroid nodules: accuracy and interobserver variability assessment. J. Ultrasound 17, 13–20 (2014)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pierpaolo Trimboli
    • 1
    Email author
  • Gaetano Paone
    • 1
  • Maria Chiara Zatelli
    • 2
  • Luca Ceriani
    • 1
  • Luca Giovanella
    • 1
  1. 1.Department of Nuclear Medicine and Thyroid CentreOncology Institute of Southern SwitzerlandBellinzonaSwitzerland
  2. 2.Department of Medical SciencesSection of Endocrinology & Internal Medicine, University of FerraraFerraraItaly

Personalised recommendations