Abstract
Purpose
Hair cortisol evaluation has been used to help detect patients with suspected Cushing syndrome. Our goal was to correlate segmental hair cortisol with biochemical testing in patients with Cushing syndrome and controls. This study was a prospective analysis of hair cortisol in confirmed Cushing syndrome cases over 16 months.
Methods
Thirty-six subjects (26.5 ± 18.9 years, 75% female, and 75% Caucasian) were analyzed by diurnal serum cortisol, 24 h urinary free cortisol corrected for body surface area (UFC/BSA), and 24 h urinary 17-hydroxysteroids corrected for creatinine (17OHS/Cr). Thirty patients were diagnosed with Cushing syndrome, and six were defined as controls. 3-cm hair samples nearest to the scalp, cut into 1-cm segments (proximal, medial, and distal), were analyzed for cortisol by enzyme immunoassay and measured as pmol cortisol/g dry hair. Hair cortisol levels were compared with laboratory testing done within previous 2 months of the evaluation.
Results
Proximal hair cortisol was higher in Cushing syndrome patients (266.6 ± 738.4 pmol/g) than control patients (38.9 ± 25.3 pmol/g) (p = 0.003). Proximal hair cortisol was highest of all segments in 25/36 (69%) patients. Among all subjects, proximal hair cortisol was strongly correlated with UFC/BSA (r = 0.5, p = 0.005), midnight serum cortisol (r = 0.4, p = 0.03), and 17OHS/Cr, which trended towards significance (r = 0.3, p = 0.06).
Conclusions
Among the three examined hair segments, proximal hair contained the highest cortisol levels and correlated the most with the initial biochemical tests for Cushing syndrome in our study. Further studies are needed to validate proximal hair cortisol in the diagnostic workup for Cushing syndrome.
This is a preview of subscription content, access via your institution.




References
L.K. Nieman, B.M. Biller, J.W. Findling, J. Newell-Price, M.O. Savage, P.M. Stewart, V.M. Montori, The diagnosis of cushing’s syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93(5), 1526–1540 (2008). doi:10.1210/jc.2008-0125
T.C. Friedman, D.E. Ghods, H.K. Shahinian, L. Zachery, N. Shayesteh, S. Seasholtz, E. Zuckerbraun, M.L. Lee, I.E. McCutcheon, High prevalence of normal tests assessing hypercortisolism in subjects with mild and episodic Cushing’s syndrome suggests that the paradigm for diagnosis and exclusion of cushing’s syndrome requires multiple testing. Horm. Metab. Res. 42(12), 874–881 (2010)
S. Kidambi, H. Raff, J.W. Findling, Limitations of nocturnal salivary cortisol and urine free cortisol in the diagnosis of mild Cushing’s syndrome. Eur. J. Endocrinol. 157(6), 725–731 (2007). doi:10.1530/eje-07-0424
F. Pecori Giraldi, A.G. Ambrogio, M. De Martin, L.M. Fatti, M. Scacchi, F. Cavagnini, Specificity of first-line tests for the diagnosis of Cushing’s syndrome: assessment in a large series. J. Clin. Endocrinol. Metab. 92(11), 4123–4129 (2007). doi:10.1210/jc.2007-0596
D.A. Papanicolaou, J.A. Yanovski, G.B. Cutler Jr., G.P. Chrousos, L.K. Nieman, A single midnight serum cortisol measurement distinguishes Cushing’s syndrome from pseudo-Cushing states. J. Clin. Endocrinol. Metab. 83(4), 1163–1167 (1998). doi:10.1210/jcem.83.4.4733
J. Newell-Price, P. Trainer, L. Perry, J. Wass, A. Grossman, M. Besser, A single sleeping midnight cortisol has 100% sensitivity for the diagnosis of Cushing’s syndrome. Clin. Endocrinol. (Oxf). 43(5), 545–550 (1995)
M.B. Elamin, M.H. Murad, R. Mullan, D. Erickson, K. Harris, S. Nadeem, R. Ennis, P.J. Erwin, V.M. Montori, Accuracy of diagnostic tests for Cushing’s syndrome: a systematic review and metaanalyses. J. Clin. Endocrinol. Metab. 93(5), 1553–1562 (2008)
M.M. Grumbach, B.M.K. Biller, G.D. Braunstein, K.K. Campbell, J.A. Carney, P.A. Godley, E.L. Harris, J.K.T. Lee, Y.C. Oertel, M.C. Posner, J.A. Schlechte, H.S. Wieand, Management of the clinically inapparent adrenal mass (“Incidentaloma”). Ann. Intern. Med. 138(5), 424–430 (2003). doi:10.7326/0003-4819-138-5-200303040-00013
J.R. Meinardi, B.H.R. Wolffenbuttel, R.P.F. Dullaart, Cyclic Cushing’s syndrome: a clinical challenge. Eur. J. Endocrinol. 157(3), 245–254 (2007)
S. Thomson, G. Koren, L.A. Fraser, M. Rieder, T.C. Friedman, S.H.M. Van Uum, Hair analysis provides a historical record of cortisol levels in Cushing’s syndrome. Exp. Clin. Endocrinol. Diabetes 118(2), 133–138 (2010). doi:10.1055/s-0029-1220771
L. Manenschijn, J.W. Koper, E.L.T. Van Den Akker, L.J.M. De Heide, E.A.M. Geerdink, F.H. De Jong, R.A. Feelders, E.F.C. Van Rossum, A novel tool in the diagnosis and follow-up of (cyclic) Cushing’s syndrome: measurement of long-term cortisol in scalp hair. J. Clin. Endocrinol. Metab. 97(10), E1836–E1843 (2012)
R. Gow, G. Koren, M. Rieder, S. Van Uum, Hair cortisol content in patients with adrenal insufficiency on hydrocortisone replacement therapy. Clin. Endocrinol. (Oxf.) 74(6), 687–693 (2011)
S.M. Staufenbiel, C.D. Andela, L. Manenschijn, A.M. Pereira, E.F. van Rossum, N.R. Biermasz, Increased hair cortisol concentrations and BMI in patients with pituitary-adrenal disease on hydrocortisone replacement. J. Clin. Endocrinol. Metab. 100(6), 2456–2462 (2015). doi:10.1210/jc.2014-4328
L. Manenschijn, M. Quinkler, E.F.C. van Rossum, Hair cortisol measurement in mitotane-treated adrenocortical cancer patients. Horm. Metab. Res. 46(04), 299–304 (2014). doi:10.1055/s-0034-1370961
G. Noppe, E.F. van Rossum, J. Vliegenthart, J.W. Koper, E.L. van den Akker, Elevated hair cortisol concentrations in children with adrenal insufficiency on hydrocortisone replacement therapy. Clin. Endocrinol. (Oxf). 81(6), 820–825 (2014). doi:10.1111/cen.12551
B. Sauvé, G. Koren, G. Walsh, S. Tokmakejian, S.H.M. Van Uum, Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin. Invest. Med. 30(5), E183–E191 (2007)
K.L. D’Anna-Hernandez, R.G. Ross, C.L. Natvig, M.L. Laudenslager, Hair cortisol levels as a retrospective marker of hypothalamic-pituitary axis activity throughout pregnancy: comparison to salivary cortisol. Physiol. Behav. 104(2), 348–353 (2011). doi:10.1016/j.physbeh.2011.02.041
B. Vanaelst, I. Huybrechts, K. Bammann, N. Michels, T. de Vriendt, K. Vyncke, I. Sioen, L. Iacoviello, K. Gunther, D. Molnar, L. Lissner, N. Rivet, J.S. Raul, S. de Henauw, Intercorrelations between serum, salivary, and hair cortisol and child-reported estimates of stress in elementary school girls. Psychophysiology 49(8), 1072–1081 (2012). doi:10.1111/j.1469-8986.2012.01396.x
F.R. Faucz, M. Zilbermint, M.B. Lodish, E. Szarek, G. Trivellin, N. Sinaii, A. Berthon, R. Libe, G. Assie, S. Espiard, L. Drougat, B. Ragazzon, J. Bertherat, C.A. Stratakis, Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) Gene: a clinical and genetic investigation. J. Clin. Endocrinol. Metab. 99(6), E1113–E1119 (2014). doi:10.1210/jc.2013-4280
D. DuBois, E.F. DuBois, A formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 17, 863–871 (1916)
H.P. Hsiao, L.S. Kirschner, I. Bourdeau, M.F. Keil, S.A. Boikos, S. Verma, A.J. Robinson-White, M. Nesterova, A. Lacroix, C.A. Stratakis, Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J. Clin. Endocrinol. Metab. 94(8), 2930–2937 (2009). doi:10.1210/jc.2009-0516
M.A. LeBeau, M.A. Montgomery, J.D. Brewer, The role of variations in growth rate and sample collection on interpreting results of segmental analyses of hair. Forensic Sci. Int. 210, 110–116 (2011)
J. Meyer, M. Novak, A. Hamel, K. Rosenberg, Extraction and analysis of cortisol from human and monkey hair. J. Vis. Exp. 83, e50882 (2013). doi:10.3791/50882
S.L. van Ockenburg, H.M. Schenk, A. van der Veen, E.F. van Rossum, I.P. Kema, J.G. Rosmalen, The relationship between 63days of 24-h urinary free cortisol and hair cortisol levels in 10 healthy individuals. Psychoneuroendocrinology 73, 142–147 (2016). doi:10.1016/j.psyneuen.2016.07.220
R.J. Myers, J.B. Hamilton, Regeneration and rate of growth of hairs in man. Ann. N. Y. Acad. Sci. 53(3), 562–568 (1951)
C. Kirschbaum, A. Tietze, N. Skoluda, L. Dettenborn, Hair as a retrospective calendar of cortisol production-increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology 34(1), 32–37 (2009). doi:10.1016/j.psyneuen.2008.08.024
L. Manenschijn, J.W. Koper, S.W.J. Lamberts, E.F.C. Van Rossum, Evaluation of a method to measure long term cortisol levels. Steroids 76(10-11), 1032–1036 (2011)
A.F. Hamel, J.S. Meyer, E. Henchey, A.M. Dettmer, S.J. Suomi, M.A. Novak, Effects of shampoo and water washing on hair cortisol concentrations. Clin. Chim. Acta 412, 382–385 (2011). doi:10.1016/j.cca.2010.10.019
M.C. Hoffman, L.V. Karban, P. Benitez, A. Goodteacher, M.L. Laudenslager, Chemical processing and shampooing impact cortisol measured in human hair. Clin. Invest. Med. 37(4), E252–E257 (2014)
V.L. Wester, N.R. van der Wulp, J.W. Koper, Y.B. de Rijke, E.F. van Rossum, Hair cortisol and cortisone are decreased by natural sunlight. Psychoneuroendocrinology 72, 94–96 (2016). doi:10.1016/j.psyneuen.2016.06.016
S.M. Staufenbiel, B.W. Penninx, Y.B. de Rijke, E.L. van den Akker, E.F. van Rossum, Determinants of hair cortisol and hair cortisone concentrations in adults. Psychoneuroendocrinology 60, 182–194 (2015). doi:10.1016/j.psyneuen.2015.06.011
J. Grass, C. Kirschbaum, R. Miller, W. Gao, S. Steudte-Schmiedgen, T. Stalder, Sweat-inducing physiological challenges do not result in acute changes in hair cortisol concentrations. Psychoneuroendocrinology 53, 108–116 (2015). doi:10.1016/j.psyneuen.2014.12.023
N. Ito, T. Ito, A. Kromminga, A. Bettermann, M. Takigawa, F. Kees, R.H. Straub, R. Paus, Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J. 19(10), 1332–1334 (2005)
A.T. Slominski, P.R. Manna, R.C. Tuckey, Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity. Exp. Dermatol. 23(6), 369–374 (2014). doi:10.1111/exd.12376
A. Tiganescu, E.A. Walker, R.S. Hardy, A.E. Mayes, P.M. Stewart, Localization, age- and site-dependent expression, and regulation of 11beta-hydroxysteroid dehydrogenase type 1 in skin. J. Invest. Dermatol. 131(1), 30–36 (2011). doi:10.1038/jid.2010.257
A. Slominski, Neuroendocrine system of the skin. Dermatology 211(3), 199–208 (2005). doi:10.1159/000087012
R.E. Smith, J.A. Maguire, A.N. Stein-Oakley, H. Sasano, K. Takahashi, K. Fukushima, Z.S. Krozowski, Localization of 11 beta-hydroxysteroid dehydrogenase type II in human epithelial tissues. J. Clin. Endocrinol. Metab. 81(9), 3244–3248 (1996). doi:10.1210/jcem.81.9.8784076
T. Stalder, C. Kirschbaum, K. Heinze, S. Steudte, P. Foley, A. Tietze, L. Dettenborn, Use of hair cortisol analysis to detect hypercortisolism during wactive drinking phases in alcohol-dependent individuals. Biol. Psychol. 85(3), 357–360 (2010). doi:10.1016/j.biopsycho.2010.08.005
M.A.B. Veldhorst, G. Noppe, M.H.T.M. Jongejan, C.B.M. Kok, S. Mekic, J.W. Koper, E.F.C. van Rossum, E.L.T. van den Akker, Increased scalp hair cortisol concentrations in obese children. J. Clin. Endocrinol. Metab. 99(1), 285–290 (2014). doi:1w0.1210/jc.2013-2924
V.L. Wester, S.M. Staufenbiel, M.A.B. Veldhorst, J.A. Visser, L. Manenschijn, J.W. Koper, F.J.M. Klessens-Godfroy, E.L.T. Van Den Akker, E.F.C. Van Rossum, Long-term cortisol levels measured in scalp hair of obese patients. Obesity 22(9), 1956–1958 (2014). doi:10.1002/oby.20795
L. Dettenborn, C. Muhtz, N. Skoluda, T. Stalder, S. Steudte, K. Hinkelmann, C. Kirschbaum, C. Otte, Introducing a novel method to assess cumulative steroid concentrations: Increased hair cortisol concentrations over 6 months in medicated patients with depression. Stress 15(3), 348–353 (2012). doi:10.3109/10253890.2011.619239
A. Herane Vives, V. De Angel, A. Papadopoulos, R. Strawbridge, T. Wise, A.H. Young, D. Arnone, A.J. Cleare, The relationship between cortisol, stress and psychiatric illness: new insights using hair analysis. J. Psychiatr. Res. 70, 38–49 (2015)
E. Charmandari, P.C. Hindmarsh, A. Johnston, C.G. Brook, Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: alterations in cortisol pharmacokinetics at puberty. J. Clin. Endocrinol. Metab. 86(6), 2701–2708 (2001). doi:10.1210/jcem.86.6.7522
C.C. Dupuis, H.L. Storr, L.A. Perry, J.T. Ho, L. Ahmed, K.K. Ong, D.B. Dunger, J.P. Monson, A.B. Grossman, G.M. Besser, M.O. Savage, Abnormal puberty in paediatric Cushing’s disease: relationship with adrenal androgen, sex hormone binding globulin and gonadotrophin concentrations. Clin. Endocrinol. (Oxf). 66(6), 838–843 (2007). doi:10.1111/j.1365-2265.2007.02822.x
G.L. Henderson, Mechanisms of drug incorporation into hair. Forensic Sci. Int. 63, 19–29 (1993)
J. Barbosa, J. Faria, F. Carvalho, M. Pedro, O. Queirós, R. Moreira, R.J. Dinis-Oliveira, Hair as an alternative matrix in bioanalysis. Bioanalysis 5(8), 895–914 (2013)
S. Pang, H. Wu, Q. Wang, M. Cai, W. Shi, J. Shang, Chronic stress suppresses the expression of cutaneous hypothalamic-pituitary-adrenocortical axis elements and melanogenesis. PLoS One 9(5), e98283 (2014). doi:10.1371/journal.pone.0098283
S. Vukelic, O. Stojadinovic, I. Pastar, M. Rabach, A. Krzyzanowska, E. Lebrun, S.C. Davis, S. Resnik, H. Brem, M. Tomic-Canic, Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. J. Biol. Chem. 286(12), 10265–10275 (2011). doi:10.1074/jbc.M110.188268
A. Tiganescu, A.A. Tahrani, S.A. Morgan, M. Otranto, A. Desmouliere, L. Abrahams, Z. Hassan-Smith, E.A. Walker, E.H. Rabbitt, M.S. Cooper, K. Amrein, G.G. Lavery, P.M. Stewart, 11beta-hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects. J. Clin. Invest. 123(7), 3051–3060 (2013). doi:10.1172/jci64162
P.M. Stewart, B.R. Walker, G. Holder, D. O’Halloran, C.H. Shackleton, 11 beta-Hydroxysteroid dehydrogenase activity in Cushing’s syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J. Clin. Endocrinol. Metab. 80(12), 3617–3620 (1995). doi:10.1210/jcem.80.12.8530609
Acknowledgments
This research was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), clinical trials NCT00005927 (Clinical and Molecular Analysis of ACTH-Independent Steroid Hormone Production in Adrenocortical Tissue) and NCT00001595 (A Clinical and Genetic Investigation of Pituitary Tumors and Related Hypothalmic Disorders). We thank the nurses of the NIH Clinical Research Center for assistance with hair cortisol collection. We thank Diane Cooper, MSLS, NIH Library, for assistance in writing this manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Additional information
Aaron Hodes, Maya B. Lodish, Constantine A. Stratakis, and Mihail Zilbermint have contributed equally to this manuscript.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Hodes, A., Lodish, M.B., Tirosh, A. et al. Hair cortisol in the evaluation of Cushing syndrome. Endocrine 56, 164–174 (2017). https://doi.org/10.1007/s12020-017-1231-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12020-017-1231-7
Keywords
- Hair cortisol
- Hair
- Cortisol
- Cushing syndrome
- Cushing disease
- Children
- Adolescence