, Volume 56, Issue 1, pp 164–174 | Cite as

Hair cortisol in the evaluation of Cushing syndrome

  • Aaron Hodes
  • Maya B. Lodish
  • Amit Tirosh
  • Jerrold Meyer
  • Elena Belyavskaya
  • Charalampos Lyssikatos
  • Kendra Rosenberg
  • Andrew Demidowich
  • Jeremy Swan
  • Nichole Jonas
  • Constantine A. Stratakis
  • Mihail ZilbermintEmail author
Original Article



Hair cortisol evaluation has been used to help detect patients with suspected Cushing syndrome. Our goal was to correlate segmental hair cortisol with biochemical testing in patients with Cushing syndrome and controls. This study was a prospective analysis of hair cortisol in confirmed Cushing syndrome cases over 16 months.


Thirty-six subjects (26.5 ± 18.9 years, 75% female, and 75% Caucasian) were analyzed by diurnal serum cortisol, 24 h urinary free cortisol corrected for body surface area (UFC/BSA), and 24 h urinary 17-hydroxysteroids corrected for creatinine (17OHS/Cr). Thirty patients were diagnosed with Cushing syndrome, and six were defined as controls. 3-cm hair samples nearest to the scalp, cut into 1-cm segments (proximal, medial, and distal), were analyzed for cortisol by enzyme immunoassay and measured as pmol cortisol/g dry hair. Hair cortisol levels were compared with laboratory testing done within previous 2 months of the evaluation.


Proximal hair cortisol was higher in Cushing syndrome patients (266.6 ± 738.4 pmol/g) than control patients (38.9 ± 25.3 pmol/g) (p = 0.003). Proximal hair cortisol was highest of all segments in 25/36 (69%) patients. Among all subjects, proximal hair cortisol was strongly correlated with UFC/BSA (r = 0.5, p = 0.005), midnight serum cortisol (r = 0.4, p = 0.03), and 17OHS/Cr, which trended towards significance (r = 0.3, p = 0.06).


Among the three examined hair segments, proximal hair contained the highest cortisol levels and correlated the most with the initial biochemical tests for Cushing syndrome in our study. Further studies are needed to validate proximal hair cortisol in the diagnostic workup for Cushing syndrome.


Hair cortisol Hair Cortisol Cushing syndrome Cushing disease Children Adolescence 



This research was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), clinical trials NCT00005927 (Clinical and Molecular Analysis of ACTH-Independent Steroid Hormone Production in Adrenocortical Tissue) and NCT00001595 (A Clinical and Genetic Investigation of Pituitary Tumors and Related Hypothalmic Disorders). We thank the nurses of the NIH Clinical Research Center for assistance with hair cortisol collection. We thank Diane Cooper, MSLS, NIH Library, for assistance in writing this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12020_2017_1231_MOESM1_ESM.tif (107 kb)
Supplementary Figure
12020_2017_1231_MOESM2_ESM.pdf (64 kb)
Supplementary Table


  1. 1.
    L.K. Nieman, B.M. Biller, J.W. Findling, J. Newell-Price, M.O. Savage, P.M. Stewart, V.M. Montori, The diagnosis of cushing’s syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93(5), 1526–1540 (2008). doi: 10.1210/jc.2008-0125 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    T.C. Friedman, D.E. Ghods, H.K. Shahinian, L. Zachery, N. Shayesteh, S. Seasholtz, E. Zuckerbraun, M.L. Lee, I.E. McCutcheon, High prevalence of normal tests assessing hypercortisolism in subjects with mild and episodic Cushing’s syndrome suggests that the paradigm for diagnosis and exclusion of cushing’s syndrome requires multiple testing. Horm. Metab. Res. 42(12), 874–881 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    S. Kidambi, H. Raff, J.W. Findling, Limitations of nocturnal salivary cortisol and urine free cortisol in the diagnosis of mild Cushing’s syndrome. Eur. J. Endocrinol. 157(6), 725–731 (2007). doi: 10.1530/eje-07-0424 CrossRefPubMedGoogle Scholar
  4. 4.
    F. Pecori Giraldi, A.G. Ambrogio, M. De Martin, L.M. Fatti, M. Scacchi, F. Cavagnini, Specificity of first-line tests for the diagnosis of Cushing’s syndrome: assessment in a large series. J. Clin. Endocrinol. Metab. 92(11), 4123–4129 (2007). doi: 10.1210/jc.2007-0596 CrossRefPubMedGoogle Scholar
  5. 5.
    D.A. Papanicolaou, J.A. Yanovski, G.B. Cutler Jr., G.P. Chrousos, L.K. Nieman, A single midnight serum cortisol measurement distinguishes Cushing’s syndrome from pseudo-Cushing states. J. Clin. Endocrinol. Metab. 83(4), 1163–1167 (1998). doi: 10.1210/jcem.83.4.4733 PubMedGoogle Scholar
  6. 6.
    J. Newell-Price, P. Trainer, L. Perry, J. Wass, A. Grossman, M. Besser, A single sleeping midnight cortisol has 100% sensitivity for the diagnosis of Cushing’s syndrome. Clin. Endocrinol. (Oxf). 43(5), 545–550 (1995)CrossRefPubMedGoogle Scholar
  7. 7.
    M.B. Elamin, M.H. Murad, R. Mullan, D. Erickson, K. Harris, S. Nadeem, R. Ennis, P.J. Erwin, V.M. Montori, Accuracy of diagnostic tests for Cushing’s syndrome: a systematic review and metaanalyses. J. Clin. Endocrinol. Metab. 93(5), 1553–1562 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    M.M. Grumbach, B.M.K. Biller, G.D. Braunstein, K.K. Campbell, J.A. Carney, P.A. Godley, E.L. Harris, J.K.T. Lee, Y.C. Oertel, M.C. Posner, J.A. Schlechte, H.S. Wieand, Management of the clinically inapparent adrenal mass (“Incidentaloma”). Ann. Intern. Med. 138(5), 424–430 (2003). doi: 10.7326/0003-4819-138-5-200303040-00013 CrossRefPubMedGoogle Scholar
  9. 9.
    J.R. Meinardi, B.H.R. Wolffenbuttel, R.P.F. Dullaart, Cyclic Cushing’s syndrome: a clinical challenge. Eur. J. Endocrinol. 157(3), 245–254 (2007)CrossRefPubMedGoogle Scholar
  10. 10.
    S. Thomson, G. Koren, L.A. Fraser, M. Rieder, T.C. Friedman, S.H.M. Van Uum, Hair analysis provides a historical record of cortisol levels in Cushing’s syndrome. Exp. Clin. Endocrinol. Diabetes 118(2), 133–138 (2010). doi: 10.1055/s-0029-1220771 CrossRefPubMedGoogle Scholar
  11. 11.
    L. Manenschijn, J.W. Koper, E.L.T. Van Den Akker, L.J.M. De Heide, E.A.M. Geerdink, F.H. De Jong, R.A. Feelders, E.F.C. Van Rossum, A novel tool in the diagnosis and follow-up of (cyclic) Cushing’s syndrome: measurement of long-term cortisol in scalp hair. J. Clin. Endocrinol. Metab. 97(10), E1836–E1843 (2012)CrossRefPubMedGoogle Scholar
  12. 12.
    R. Gow, G. Koren, M. Rieder, S. Van Uum, Hair cortisol content in patients with adrenal insufficiency on hydrocortisone replacement therapy. Clin. Endocrinol. (Oxf.) 74(6), 687–693 (2011)CrossRefGoogle Scholar
  13. 13.
    S.M. Staufenbiel, C.D. Andela, L. Manenschijn, A.M. Pereira, E.F. van Rossum, N.R. Biermasz, Increased hair cortisol concentrations and BMI in patients with pituitary-adrenal disease on hydrocortisone replacement. J. Clin. Endocrinol. Metab. 100(6), 2456–2462 (2015). doi: 10.1210/jc.2014-4328 CrossRefPubMedGoogle Scholar
  14. 14.
    L. Manenschijn, M. Quinkler, E.F.C. van Rossum, Hair cortisol measurement in mitotane-treated adrenocortical cancer patients. Horm. Metab. Res. 46(04), 299–304 (2014). doi: 10.1055/s-0034-1370961 CrossRefPubMedGoogle Scholar
  15. 15.
    G. Noppe, E.F. van Rossum, J. Vliegenthart, J.W. Koper, E.L. van den Akker, Elevated hair cortisol concentrations in children with adrenal insufficiency on hydrocortisone replacement therapy. Clin. Endocrinol. (Oxf). 81(6), 820–825 (2014). doi: 10.1111/cen.12551 CrossRefPubMedGoogle Scholar
  16. 16.
    B. Sauvé, G. Koren, G. Walsh, S. Tokmakejian, S.H.M. Van Uum, Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin. Invest. Med. 30(5), E183–E191 (2007)PubMedGoogle Scholar
  17. 17.
    K.L. D’Anna-Hernandez, R.G. Ross, C.L. Natvig, M.L. Laudenslager, Hair cortisol levels as a retrospective marker of hypothalamic-pituitary axis activity throughout pregnancy: comparison to salivary cortisol. Physiol. Behav. 104(2), 348–353 (2011). doi: 10.1016/j.physbeh.2011.02.041 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    B. Vanaelst, I. Huybrechts, K. Bammann, N. Michels, T. de Vriendt, K. Vyncke, I. Sioen, L. Iacoviello, K. Gunther, D. Molnar, L. Lissner, N. Rivet, J.S. Raul, S. de Henauw, Intercorrelations between serum, salivary, and hair cortisol and child-reported estimates of stress in elementary school girls. Psychophysiology 49(8), 1072–1081 (2012). doi: 10.1111/j.1469-8986.2012.01396.x PubMedGoogle Scholar
  19. 19.
    F.R. Faucz, M. Zilbermint, M.B. Lodish, E. Szarek, G. Trivellin, N. Sinaii, A. Berthon, R. Libe, G. Assie, S. Espiard, L. Drougat, B. Ragazzon, J. Bertherat, C.A. Stratakis, Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) Gene: a clinical and genetic investigation. J. Clin. Endocrinol. Metab. 99(6), E1113–E1119 (2014). doi: 10.1210/jc.2013-4280 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    D. DuBois, E.F. DuBois, A formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 17, 863–871 (1916)CrossRefGoogle Scholar
  21. 21.
    H.P. Hsiao, L.S. Kirschner, I. Bourdeau, M.F. Keil, S.A. Boikos, S. Verma, A.J. Robinson-White, M. Nesterova, A. Lacroix, C.A. Stratakis, Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J. Clin. Endocrinol. Metab. 94(8), 2930–2937 (2009). doi: 10.1210/jc.2009-0516 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    M.A. LeBeau, M.A. Montgomery, J.D. Brewer, The role of variations in growth rate and sample collection on interpreting results of segmental analyses of hair. Forensic Sci. Int. 210, 110–116 (2011)CrossRefPubMedGoogle Scholar
  23. 23.
    J. Meyer, M. Novak, A. Hamel, K. Rosenberg, Extraction and analysis of cortisol from human and monkey hair. J. Vis. Exp. 83, e50882 (2013). doi: 10.3791/50882 Google Scholar
  24. 24.
    S.L. van Ockenburg, H.M. Schenk, A. van der Veen, E.F. van Rossum, I.P. Kema, J.G. Rosmalen, The relationship between 63days of 24-h urinary free cortisol and hair cortisol levels in 10 healthy individuals. Psychoneuroendocrinology 73, 142–147 (2016). doi: 10.1016/j.psyneuen.2016.07.220 CrossRefPubMedGoogle Scholar
  25. 25.
    R.J. Myers, J.B. Hamilton, Regeneration and rate of growth of hairs in man. Ann. N. Y. Acad. Sci. 53(3), 562–568 (1951)CrossRefPubMedGoogle Scholar
  26. 26.
    C. Kirschbaum, A. Tietze, N. Skoluda, L. Dettenborn, Hair as a retrospective calendar of cortisol production-increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology 34(1), 32–37 (2009). doi: 10.1016/j.psyneuen.2008.08.024 CrossRefPubMedGoogle Scholar
  27. 27.
    L. Manenschijn, J.W. Koper, S.W.J. Lamberts, E.F.C. Van Rossum, Evaluation of a method to measure long term cortisol levels. Steroids 76(10-11), 1032–1036 (2011)CrossRefPubMedGoogle Scholar
  28. 28.
    A.F. Hamel, J.S. Meyer, E. Henchey, A.M. Dettmer, S.J. Suomi, M.A. Novak, Effects of shampoo and water washing on hair cortisol concentrations. Clin. Chim. Acta 412, 382–385 (2011). doi: 10.1016/j.cca.2010.10.019 CrossRefPubMedGoogle Scholar
  29. 29.
    M.C. Hoffman, L.V. Karban, P. Benitez, A. Goodteacher, M.L. Laudenslager, Chemical processing and shampooing impact cortisol measured in human hair. Clin. Invest. Med. 37(4), E252–E257 (2014)PubMedPubMedCentralGoogle Scholar
  30. 30.
    V.L. Wester, N.R. van der Wulp, J.W. Koper, Y.B. de Rijke, E.F. van Rossum, Hair cortisol and cortisone are decreased by natural sunlight. Psychoneuroendocrinology 72, 94–96 (2016). doi: 10.1016/j.psyneuen.2016.06.016 CrossRefPubMedGoogle Scholar
  31. 31.
    S.M. Staufenbiel, B.W. Penninx, Y.B. de Rijke, E.L. van den Akker, E.F. van Rossum, Determinants of hair cortisol and hair cortisone concentrations in adults. Psychoneuroendocrinology 60, 182–194 (2015). doi: 10.1016/j.psyneuen.2015.06.011 CrossRefPubMedGoogle Scholar
  32. 32.
    J. Grass, C. Kirschbaum, R. Miller, W. Gao, S. Steudte-Schmiedgen, T. Stalder, Sweat-inducing physiological challenges do not result in acute changes in hair cortisol concentrations. Psychoneuroendocrinology 53, 108–116 (2015). doi: 10.1016/j.psyneuen.2014.12.023 CrossRefPubMedGoogle Scholar
  33. 33.
    N. Ito, T. Ito, A. Kromminga, A. Bettermann, M. Takigawa, F. Kees, R.H. Straub, R. Paus, Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J. 19(10), 1332–1334 (2005)PubMedGoogle Scholar
  34. 34.
    A.T. Slominski, P.R. Manna, R.C. Tuckey, Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity. Exp. Dermatol. 23(6), 369–374 (2014). doi: 10.1111/exd.12376 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    A. Tiganescu, E.A. Walker, R.S. Hardy, A.E. Mayes, P.M. Stewart, Localization, age- and site-dependent expression, and regulation of 11beta-hydroxysteroid dehydrogenase type 1 in skin. J. Invest. Dermatol. 131(1), 30–36 (2011). doi: 10.1038/jid.2010.257 CrossRefPubMedGoogle Scholar
  36. 36.
    A. Slominski, Neuroendocrine system of the skin. Dermatology 211(3), 199–208 (2005). doi: 10.1159/000087012 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    R.E. Smith, J.A. Maguire, A.N. Stein-Oakley, H. Sasano, K. Takahashi, K. Fukushima, Z.S. Krozowski, Localization of 11 beta-hydroxysteroid dehydrogenase type II in human epithelial tissues. J. Clin. Endocrinol. Metab. 81(9), 3244–3248 (1996). doi: 10.1210/jcem.81.9.8784076 PubMedGoogle Scholar
  38. 38.
    T. Stalder, C. Kirschbaum, K. Heinze, S. Steudte, P. Foley, A. Tietze, L. Dettenborn, Use of hair cortisol analysis to detect hypercortisolism during wactive drinking phases in alcohol-dependent individuals. Biol. Psychol. 85(3), 357–360 (2010). doi: 10.1016/j.biopsycho.2010.08.005 CrossRefPubMedGoogle Scholar
  39. 39.
    M.A.B. Veldhorst, G. Noppe, M.H.T.M. Jongejan, C.B.M. Kok, S. Mekic, J.W. Koper, E.F.C. van Rossum, E.L.T. van den Akker, Increased scalp hair cortisol concentrations in obese children. J. Clin. Endocrinol. Metab. 99(1), 285–290 (2014). doi: 1w0.1210/jc.2013-2924 CrossRefPubMedGoogle Scholar
  40. 40.
    V.L. Wester, S.M. Staufenbiel, M.A.B. Veldhorst, J.A. Visser, L. Manenschijn, J.W. Koper, F.J.M. Klessens-Godfroy, E.L.T. Van Den Akker, E.F.C. Van Rossum, Long-term cortisol levels measured in scalp hair of obese patients. Obesity 22(9), 1956–1958 (2014). doi: 10.1002/oby.20795 CrossRefPubMedGoogle Scholar
  41. 41.
    L. Dettenborn, C. Muhtz, N. Skoluda, T. Stalder, S. Steudte, K. Hinkelmann, C. Kirschbaum, C. Otte, Introducing a novel method to assess cumulative steroid concentrations: Increased hair cortisol concentrations over 6 months in medicated patients with depression. Stress 15(3), 348–353 (2012). doi: 10.3109/10253890.2011.619239 CrossRefPubMedGoogle Scholar
  42. 42.
    A. Herane Vives, V. De Angel, A. Papadopoulos, R. Strawbridge, T. Wise, A.H. Young, D. Arnone, A.J. Cleare, The relationship between cortisol, stress and psychiatric illness: new insights using hair analysis. J. Psychiatr. Res. 70, 38–49 (2015)CrossRefPubMedGoogle Scholar
  43. 43.
    E. Charmandari, P.C. Hindmarsh, A. Johnston, C.G. Brook, Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: alterations in cortisol pharmacokinetics at puberty. J. Clin. Endocrinol. Metab. 86(6), 2701–2708 (2001). doi: 10.1210/jcem.86.6.7522 CrossRefPubMedGoogle Scholar
  44. 44.
    C.C. Dupuis, H.L. Storr, L.A. Perry, J.T. Ho, L. Ahmed, K.K. Ong, D.B. Dunger, J.P. Monson, A.B. Grossman, G.M. Besser, M.O. Savage, Abnormal puberty in paediatric Cushing’s disease: relationship with adrenal androgen, sex hormone binding globulin and gonadotrophin concentrations. Clin. Endocrinol. (Oxf). 66(6), 838–843 (2007). doi: 10.1111/j.1365-2265.2007.02822.x CrossRefPubMedGoogle Scholar
  45. 45.
    G.L. Henderson, Mechanisms of drug incorporation into hair. Forensic Sci. Int. 63, 19–29 (1993)CrossRefPubMedGoogle Scholar
  46. 46.
    J. Barbosa, J. Faria, F. Carvalho, M. Pedro, O. Queirós, R. Moreira, R.J. Dinis-Oliveira, Hair as an alternative matrix in bioanalysis. Bioanalysis 5(8), 895–914 (2013)CrossRefPubMedGoogle Scholar
  47. 47.
    S. Pang, H. Wu, Q. Wang, M. Cai, W. Shi, J. Shang, Chronic stress suppresses the expression of cutaneous hypothalamic-pituitary-adrenocortical axis elements and melanogenesis. PLoS One 9(5), e98283 (2014). doi: 10.1371/journal.pone.0098283 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    S. Vukelic, O. Stojadinovic, I. Pastar, M. Rabach, A. Krzyzanowska, E. Lebrun, S.C. Davis, S. Resnik, H. Brem, M. Tomic-Canic, Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. J. Biol. Chem. 286(12), 10265–10275 (2011). doi: 10.1074/jbc.M110.188268 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    A. Tiganescu, A.A. Tahrani, S.A. Morgan, M. Otranto, A. Desmouliere, L. Abrahams, Z. Hassan-Smith, E.A. Walker, E.H. Rabbitt, M.S. Cooper, K. Amrein, G.G. Lavery, P.M. Stewart, 11beta-hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects. J. Clin. Invest. 123(7), 3051–3060 (2013). doi: 10.1172/jci64162 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    P.M. Stewart, B.R. Walker, G. Holder, D. O’Halloran, C.H. Shackleton, 11 beta-Hydroxysteroid dehydrogenase activity in Cushing’s syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J. Clin. Endocrinol. Metab. 80(12), 3617–3620 (1995). doi: 10.1210/jcem.80.12.8530609 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2017

Authors and Affiliations

  • Aaron Hodes
    • 1
    • 2
  • Maya B. Lodish
    • 1
  • Amit Tirosh
    • 1
    • 3
  • Jerrold Meyer
    • 4
  • Elena Belyavskaya
    • 1
  • Charalampos Lyssikatos
    • 1
  • Kendra Rosenberg
    • 4
  • Andrew Demidowich
    • 1
  • Jeremy Swan
    • 1
  • Nichole Jonas
    • 1
  • Constantine A. Stratakis
    • 1
  • Mihail Zilbermint
    • 1
    • 5
    • 6
    Email author
  1. 1.Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA
  2. 2.Albert Einstein College of Medicine, Department of RadiologyJacobi Medical CenterBronxUSA
  3. 3.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  4. 4.Department of Psychological and Brain SciencesUniversity of MassachusettsAmherstUSA
  5. 5.Johns Hopkins University School of Medicine, Division of EndocrinologyDiabetes, and MetabolismBaltimoreUSA
  6. 6.Suburban HospitalBethesdaUSA

Personalised recommendations