Skip to main content

Aldehyde dehydrogenase activity plays no functional role in stem cell-like properties in anaplastic thyroid cancer cell lines

Abstract

Recent studies have revealed that aldehyde dehydrogenase (ALDH) is a candidate marker for thyroid cancer stem cells, although its activity is flexible. The goal of this study is to clarify the functional significance of ALDH enzymatic activity on thyroid cancer stem cells properties in anaplastic thyroid cancer cell lines. In vitro sphere formation assay was used to judge the stemness of 4 anaplastic thyroid cancer cell lines (FRO, ACT1, 8505C, and KTC3). Two well-known ALDH inhibitors, N,N-diethylaminobenzaldehyde (DEAB) and disulfiram (DS), were first used. DEAB (50 μM) almost completely suppressed ALDH activity without affecting cell proliferation or spherogenicity. Lack of effect of ALDH suppression on spherogenicity was confirmed using shRNA for ALDH1A3, an ALDH isozyme predominantly expressed in anaplastic thyroid cancer cell lines. In contrast, an ALDH2 inhibitor DS (1 μM) inhibited spherogenicity but did not inhibit ALDH1A3 activity. Based on the recent article from another group reporting the importance of sonic hedgehog (Shh) signaling in ALDH activity and spherogenicity in thyroid cancer, the effects of the Shh inhibitor cyclopamine were also studied. Like DS, cyclopamine (1 μM) decreased spherogenicity but not ALDH activity. Finally, exogenous expression of ALDH1A3 in otherwise ALDH TPC1 cells (a papillary thyroid cancer cell line) revealed no effect on spherogenicity. In conclusion, we here show no functional role for ALDH activity in thyroid thyroid cancer stem cells properties. That is, ALDH activity and spherogenicity are clearly dissociable. Further understanding of thyroid cancer stem cells biology in thyroid cancers remains necessary for the future development of thyroid thyroid cancer stem cells-targeted therapies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. L. Vermeulen, F. de Sousa e Melo, D.J. Richel, J.P. Medema, The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol. 13(2), e83–e89 (2012)

    Article  PubMed  Google Scholar 

  2. K.S. Hoek, C.R. Goding, Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res. 23(6), 746–759 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Nagayama, M. Shimamura, N. Mitsutake, Cancer stem cells in the thyroid. Front Endocrinol (Lausanne) 7, 20 (2016)

    Google Scholar 

  4. R.Y. Lin, Thyroid cancer stem cells. Nature reviews. Endocrinology 7(10), 609–616 (2011)

    CAS  PubMed  Google Scholar 

  5. Y.J. Gao, B. Li, X.Y. Wu, J. Cui, J.K. Han, Thyroid tumor-initiating cells: increasing evidence and opportunities for anticancer therapy (review). Oncol. Rep. 31(3), 1035–1042 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Shimamura, Y. Nagayama, M. Matsuse, S. Yamashita, N. Mitsutake, Analysis of multiple markers for cancer stem-like cells in human thyroid carcinoma cell lines. Endocr. J. 61(5), 481–490 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. M. Todaro, F. Iovino, V. Eterno, P. Cammareri, G. Gambara, V. Espina, G. Gulotta, F. Dieli, S. Giordano, R. De Maria, G. Stassi, Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res. 70(21), 8874–8885 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. S.H. Ahn, Y.C. Henderson, M.D. Williams, S.Y. Lai, G.L. Clayman, Detection of thyroid cancer stem cells in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 99(2), 536–544 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. R. Malaguarnera, F. Frasca, A. Garozzo, F. Giani, G. Pandini, V. Vella, R. Vigneri, A. Belfiore, Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid. J. Clin. Endocrinol. Metab. 96(3), 766–774 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. R. Ma, N. Minsky, S.A. Morshed, T.F. Davies, Stemness in human thyroid cancers and derived cell lines: the role of asymmetrically dividing cancer stem cells resistant to chemotherapy. J. Clin. Endocrinol. Metab. 99(3), E400–E409 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. K.B. Heiden, A.J. Williamson, M.E. Doscas, J. Ye, Y. Wang, D. Liu, M. Xing, R.A. Prinz, X. Xu, The sonic hedgehog signaling pathway maintains the cancer stem cell self-renewal of anaplastic thyroid cancer by inducing snail expression. J. Clin. Endocrinol. Metab. 99(11), E2178–E2187 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. L.M. Tseng, P.I. Huang, Y.R. Chen, Y.C. Chen, Y.C. Chou, Y.W. Chen, Y.L. Chang, H.S. Hsu, Y.T. Lan, K.H. Chen, C.W. Chi, S.H. Chiou, D.M. Yang, C.H. Lee, Targeting signal transducer and activator of transcription 3 pathway by cucurbitacin I diminishes self-renewing and radiochemoresistant abilities in thyroid cancer-derived CD133+ cells. J. Pharmacol. Exp. Ther. 341(2), 410–423 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Nobuhara, N. Onoda, Y. Yamashita, M. Yamasaki, K. Ogisawa, T. Takashima, T. Ishikawa, K. Hirakawa, Efficacy of epidermal growth factor receptor-targeted molecular therapy in anaplastic thyroid cancer cell lines. Br. J. Cancer 92(6), 1110–1116 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. I. Landa, I. Ganly, T.A. Chan, N. Mitsutake, M. Matsuse, T. Ibrahimpasic, R.A. Ghossein, J.A. Fagin, Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J. Clin. Endocrinol. Metab. 98(9), E1562–E1566 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. H. Namba, M. Nakashima, T. Hayashi, N. Hayashida, S. Maeda, T.I. Rogounovitch, A. Ohtsuru, V.A. Saenko, T. Kanematsu, S. Yamashita, Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab. 88(9), 4393–4397 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. T. Kurashige, M. Shimamura, K. Yasui, N. Mitsutake, M. Matsuse, M. Nakashima, S. Minami, S. Eguchi, Y. Nagayama, Studies on expression of aldehyde dehydrogenase in normal and cancerous tissues of thyroids. Horm. Metab. Res. 47(3), 194–199 (2015)

    CAS  PubMed  Google Scholar 

  17. K. Yasui, M. Shimamura, N. Mitsutake, Y. Nagayama, SNAIL induces epithelial-to-mesenchymal transition and cancer stem cell-like properties in aldehyde dehydroghenase-negative thyroid cancer cells. Thyroid 23(8), 989–996 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. M. Dima, V. Pecce, M. Biffoni, C.R. Di Gioia, G. Tallini, M. Biffoni, F. Rosignolo, A. Verrienti, M. Sponziello, G. Damante, D. Russo, C. Durante, Molecular profiles of cancer stem-like cell populations in aggressive thyroid cancers. Endocrine 53(1), 145–156 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. I. Ma, A.L. Allan, The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev. 7(2), 292–306 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. P. Marcato, C.A. Dean, C.A. Giacomantonio, P.W. Lee, Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 10(9), 1378–1384 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. V. Koppaka, D.C. Thompson, Y. Chen, M. Ellermann, K.C. Nicolaou, R.O. Juvonen, D. Petersen, R.A. Deitrich, T.D. Hurley, V. Vasiliou, Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev. 64(3), 520–539 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C.C. Hui, S. Angers, Gli proteins in development and disease. Annu. Rev. Cell Dev. Biol. 27, 513–537 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. C.A. O’Brien, A. Kreso, P. Ryan, K.G. Hermans, L. Gibson, Y. Wang, A. Tsatsanis, S. Gallinger, J.E. Dick, ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell 21(6), 777–792 (2012)

    Article  PubMed  Google Scholar 

  24. C. Ginestier, J. Wicinski, N. Cervera, F. Monville, P. Finetti, F. Bertucci, M.S. Wicha, D. Birnbaum, E. Charafe-Jauffret, Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 8(20), 3297–3302 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. C.N. Landen Jr., B. Goodman, A.A. Katre, A.D. Steg, A.M. Nick, R.L. Stone, L.D. Miller, P.V. Mejia, N.B. Jennings, D.M. Gershenson, R.C. Bast Jr., R.L. Coleman, G. Lopez-Berestein, A.K. Sood, Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol. Cancer Ther. 9(12), 3186–3199 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. P. Mao, K. Joshi, J. Li, S.H. Kim, P. Li, L. Santana-Santos, S. Luthra, U.R. Chandran, P.V. Benos, L. Smith, M. Wang, B. Hu, S.Y. Cheng, R.W. Sobol, I. Nakano, Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc. Natl. Acad. Sci. U. S. A. 110(21), 8644–8649 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J.S. Moreb, H.V. Baker, L.J. Chang, M. Amaya, M.C. Lopez, B. Ostmark, W. Chou, ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells. Mol. Cancer 7, 87 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  28. C. van den Hoogen, G. van der Horst, H. Cheung, J.T. Buijs, R.C. Pelger, G. van der Pluijm, The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis. Clin. Exp. Metastasis 28(7), 615–625 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. P. Marcato, C.A. Dean, R.Z. Liu, K.M. Coyle, M. Bydoun, M. Wallace, D. Clements, C. Turner, E.G. Mathenge, S.A. Gujar, C.A. Giacomantonio, J.R. Mackey, R. Godbout, P.W. Lee, Aldehyde dehydrogenase 1A3 influences breast cancer progression via differential retinoic acid signaling. Mol. Oncol. 9(1), 17–31 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. V. Golubovskaya, S. O’Brien, B. Ho, M. Heffler, J. Conroy, Q. Hu, D. Wang, S. Liu, W.G. Cance, Down-regulation of ALDH1A3, CD44 or MDR1 sensitizes resistant cancer cells to FAK autophosphorylation inhibitor Y15. J. Cancer Res. Clin. Oncol. 141(9), 1613–1631 (2015)

  31. Y. Xing, D.Y. Luo, M.Y. Long, S.L. Zeng, H.H. Li, High ALDH1A1 expression correlates with poor survival in papillary thyroid carcinoma. World J. Surg. Oncol. 12, 29 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  32. M. Malehmir, V. Haghpanah, B. Larijani, S. Ahmadian, K. Alimoghaddam, R. Heshmat, A. Ghavamzadeh, K. Adabi, S.H. Ghaffari, Multifaceted suppression of aggressive behavior of thyroid carcinoma by all-trans retinoic acid induced re-differentiation. Mol. Cell. Endocrinol. 348(1), 260–269 (2012)

    PubMed  Google Scholar 

  33. Y. Luo, K. Dallaglio, Y. Chen, W.A. Robinson, S.E. Robinson, M.D. McCarter, J. Wang, R. Gonzalez, D.C. Thompson, D.A. Norris, D.R. Roop, V. Vasiliou, M. Fujita, ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30(10), 2100–2113 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Z. Guo, H. Hardin, R.V. Lloyd, Cancer stem-like cells and thyroid cancer. Endocr. Relat. Cancer 21(5), T285–T300 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. C. van den Hoogen, G. van der Horst, H. Cheung, J.T. Buijs, J.M. Lippitt, N. Guzman-Ramirez, F.C. Hamdy, C.L. Eaton, G.N. Thalmann, M.G. Cecchini, R.C. Pelger, G. van der Pluijm, High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 70(12), 5163–5173 (2010)

    Article  PubMed  Google Scholar 

  36. L. Duan, H. Shen, G. Zhao, R. Yang, X. Cai, L. Zhang, C. Jin, Y. Huang, Inhibitory effect of disulfiram/copper complex on non-small cell lung cancer cells. Biochem. Biophys. Res. Commun. 446(4), 1010–1016 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. S.A. Choi, J.W. Choi, K.C. Wang, J.H. Phi, J.Y. Lee, K.D. Park, D. Eum, S.H. Park, I.H. Kim, S.K. Kim, Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors. Neuro-Oncol. 17(6), 810–821 (2014)

  38. T. Chiba, E. Suzuki, K. Yuki, Y. Zen, M. Oshima, S. Miyagi, A. Saraya, S. Koide, T. Motoyama, S. Ogasawara, Y. Ooka, A. Tawada, T. Nakatsura, T. Hayashi, T. Yamashita, S. Kaneko, M. Miyazaki, A. Iwama, O. Yokosuka, Disulfiram eradicates tumor-initiating hepatocellular carcinoma cells in ROS-p38 MAPK pathway-dependent and -independent manners. PLoS ONE 9(1), e84807 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  39. P. Liu, S. Brown, T. Goktug, P. Channathodiyil, V. Kannappan, J.P. Hugnot, P.O. Guichet, X. Bian, A.L. Armesilla, J.L. Darling, W. Wang, Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells. Br. J. Cancer 107(9), 1488–1497 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. T. Ishiguro, A. Sato, H. Ohata, Y. Ikarashi, R.U. Takahashi, T. Ochiya, M. Yoshida, H. Tsuda, T. Onda, T. Kato, T. Kasamatsu, T. Enomoto, K. Tanaka, H. Nakagama, K. Okamoto, Establishment and characterization of an in vitro model of ovarian cancer stem-like cells with an enhanced proliferative capacity. Cancer Res. 76(1), 150–160 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. J.S. Moreb, D. Ucar, S. Han, J.K. Amory, A.S. Goldstein, B. Ostmark, L.J. Chang, The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chem. Biol. Interact. 195(1), 52–60 (2012)

    Article  CAS  PubMed  Google Scholar 

  42. L. Vicari, C. Colarossi, D. Giuffrida, R. De Maria, L. Memeo, Cancer stem cells as a potential therapeutic target in thyroid carcinoma. Oncol. Lett. 12(4), 2254–2260 (2016)

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research 15K19535 (to M.S.) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Nagayama.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shimamura, M., Kurashige, T., Mitsutake, N. et al. Aldehyde dehydrogenase activity plays no functional role in stem cell-like properties in anaplastic thyroid cancer cell lines. Endocrine 55, 934–943 (2017). https://doi.org/10.1007/s12020-016-1224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1224-y

Keywords

  • Aldefluor assay
  • Aldehyde dehydrogenase
  • Cancer stem cells
  • Spherogenicity
  • Thyroid cancer